Fundamentals and Applications
Buch, Englisch, 1226 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 2450 g
ISBN: 978-3-031-26587-7
Verlag: Springer
Cloud Based Remote Sensing with Google Earth Engine is broadly organized into two halves. The first half, Fundamentals, is a set of 31 labs designed to take the reader from being a complete Earth Engine novice to being a quite advanced user. The second half, Applications, presents a tour of the world of Earth Engine across 24 chapters, showing how it is used in a very wide variety of settings that rely on remote-sensing data
This is an open access book.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Chemie Analytische Chemie
- Geowissenschaften Umweltwissenschaften Umweltüberwachung, Umweltanalytik, Umweltinformatik
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken
- Mathematik | Informatik EDV | Informatik Informatik Bildsignalverarbeitung
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik Signalverarbeitung
Weitere Infos & Material
Part 1: Programming and Remote Sensing Basics.- 1. JavaScript and the Earth Engine API.- 2. Exploring Images.- 3. Survey of Raster Datasets.- 4. The Remote Sensing Vocabulary.-Part 2: Interpreting Images.- 5. Image Manipulation: Bands, Arithmetic, Thresholds, and Masks.- 6. Interpreting an Image: Classification.- 7. Accuracy Assessment: Quantifying Classification Quality.- Part 3: Advanced Image Processing.- 8. Interpreting an Image: Regression.- 9. Advanced Pixel-based Image Transformation.- 10. Neighborhood-based Image Transformation.- 11. Object-based Image Analysis.- Part 4: Interpreting Image Series.- 12. Filter, Map, Reduce.- 13. Exploring Image Collections.- 14. Aggregating Images for Time Series.- 15. Clouds and Image Compositing.- 16. Change Detection.- 17. Interpreting Annual Time Series with LandTrendr.- 18. Fitting Functions to Time Series.-19. Interpreting Time Series with CCDC.- 20. Data Fusion: Merging Classification Streams.- 21. Exploring Lagged Effects in Time Series.- Part 5: Vectors and Tables.- 22. Exploring Vectors.- 23. Raster/Vector Conversions.- 24. Zonal Statistics.- 25. Advanced Vector Operations.- 26. GEEDiT - Digitizing From Satellite Imagery.- Part 6: Advanced Topics.- 27. Advanced Raster Visualization.- 28. Collaborating in Earth Engine with Scripts and Assets.- 29. Scaling up in Earth Engine.- 30. Sharing Work in Earth Engine: Basic UI and Apps.- 31. Combining R and Earth Engine.- Part 7: Human Applications.- 32. Agricultural Environments.- 33. Urban Environments.- 34. Built Environments.- 35. Air pollution and population exposure.- 36. Heat Islands.- 37. Health Applications.- 38. Humanitarian Applications.- 39. Monitoring Gold Mining Activity using SAR.- Part 8: Aquatic and Hydrological Applications.- 40. Groundwater monitoring with GRACE.- 41. Benthic Habitats.- 42. Surface Water Mapping.- 43. River morphology.- 44. Water Balance and Drought.- 45. Defining Seasonality: First Date of No Snow.-Part 9: Terrestrial Applications.- 46. Active fire monitoring.- 47. Mangroves.- 48. Mangroves II - Change Mapping.- 49. Forest Degradation and Deforestation.- 50. Deforestation Viewed from Multiple Sensors.- 51. Working With GPS & Weather Data.- 52. Creating Presence and Absence Points.- 53. Detecting Land Cover Change in Rangelands.- 54. Conservation I - Assessing the spatial relationship between burned area and precipitation.- 55. Conservation II - Assessing Agricultural Intensification Near Protected Areas.