Buch, Englisch, Band 56, 330 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 540 g
Reihe: Applied Optimization
Buch, Englisch, Band 56, 330 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 540 g
Reihe: Applied Optimization
ISBN: 978-1-4419-4858-8
Verlag: Springer US
This monograph presents in a unified manner results that have been generated over the past several years and are scattered in the research literature. The material covered in the monograph includes problem formulation, numerical optimization algorithms, filter robustness issues and practical examples of the application of envelope constrained filter design.
Postgraduate students, researchers in optimization and telecommunications engineering, and applied mathematicians.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Mikroprozessoren
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Operations Research Spieltheorie
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Bauelemente, Schaltkreise
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Computeranwendungen in der Mathematik
Weitere Infos & Material
1 Introduction.- 2 Filtering with Convex Response Constraints.- 3 Analysis and Problem Characterization.- 4 Discrete-Time EC Filtering Algorithms.- 5 Numerical Methods for Continuous-Time EC Filtering.- 6 Robust Envelope Constrained Filtering.- Appendix A Mathematical Background.- A.1 Topological Space.- A.2 Metric Spaces.- A.3 Vector Spaces.- A.4 Normed Spaces.- A.5 Inner Product Spaces.- A.6 Linear Operators.- A.7 Linear Functionals and Dual Spaces.- A.8 Measures and Integration.- Appendix B Optimization Theory.- B.1 Projection Theorem.- B.2 Hahn-Banach Theorem.- B.3 Positive Cones and Convex Mappings.- B.4 Gateaux and Fréchet Differentials.- B.5 Lagrange Multipliers.- References.