Cacuci | Advances in High-Order Sensitivity Analysis | Buch | 978-1-032-76359-0 | www2.sack.de

Buch, Englisch, 300 Seiten, Format (B × H): 156 mm x 234 mm

Reihe: Advances in Applied Mathematics

Cacuci

Advances in High-Order Sensitivity Analysis


1. Auflage 2026
ISBN: 978-1-032-76359-0
Verlag: Taylor & Francis Ltd

Buch, Englisch, 300 Seiten, Format (B × H): 156 mm x 234 mm

Reihe: Advances in Applied Mathematics

ISBN: 978-1-032-76359-0
Verlag: Taylor & Francis Ltd


The high-order sensitivities of model responses with respect to model parameters are notoriously difficult to compute for large-scale models involving many parameters. The neglect of higher-order response sensitivities leads to substantial errors in predicting the moments (expectation, variance, skewness, kurtosis, and higher-order) of the model response’s distribution in the phase space of model parameters. The author expands on his theory of addressing high-order sensitivity analysis in this book, Advances in High-Order Sensitivity Analysis.

The mathematical/computational models of physical systems comprise parameters, independent variables, and dependent variables. Since the physical processes themselves are seldom known precisely and since most of the model’s parameters stem from experimental procedures that are also subject to imprecision and/or uncertainties, the results predicted by these models are also imprecise, being affected by the uncertainties underlying the respective model.

In the particular case of sensitivity analysis using conventional methods, the number of large-scale computations increases exponentially. For large-scale models involving many parameters, even the first-order sensitivities are computationally very expensive to determine accurately by conventional methods. Furthermore, the “curse of dimensionality” prohibits the accurate computation of higher-order sensitivities by conventional methods.

Other books by the author, all published by CRC Press, include Sensitivity and Uncertainty Analysis, Volume I: Theory (2003); Sensitivity and Uncertainty Analysis, Volume II: Applications to Large-Scale Systems (Cacuci, et al., 2005); Computational Methods for Data Evaluation and Assimilation (Cacuci et al. 2014); The Second-Order Adjoint Sensitivity Analysis Methodology (2018); and Advances in High-Order Predictive Modeling Methodologies and Illustrative Problems (2025).

Cacuci Advances in High-Order Sensitivity Analysis jetzt bestellen!

Zielgruppe


Postgraduate and Professional Reference


Autoren/Hrsg.


Weitere Infos & Material


1. Motivation for Computing High-Order Sensitivities of Model Responses to Model Parameters 2. The 1st-FASAM-N Methodology for Nonlinear Systems 3. The 2nd-FASAM-N Methodology for Nonlinear Systems 4. The Mathematical Framework of the nth-Order Feature/Function Adjoint Sensitivity Analysis Methodology for Nonlinear Systems (nth-FASAM-N) 5. Illustrative Application of the nth-FASAM-N Methodology to the Nordheim-Fuchs Reactor Safety Model 6. The nth-Order Features Adjoint Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint Linear Systems (nth-FASAM-L) 7. Illustrative Application of the nth-FASAM-L


Dan Gabriel Cacuci is a Distinguished Professor Emeritus in the Department of Mechanical Engineering at the University of South Carolina and the Karlsruhe Institute of Technology, Germany. He received his PhD in applied physics, mechanical, and nuclear engineering from Columbia University, New York City. He is also the recipient of many awards, including four honorary doctorates, Germany’s Humboldt Preis, the Ernest Orlando Lawrence Memorial Award from the U.S. Department of Energy, and the Arthur Holly Compton, Eugene P. Wigner, and Glenn Seaborg Awards from the American Nuclear Society.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.