Buch, Englisch, Band 1813, 169 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 283 g
Reihe: Lecture Notes in Mathematics
Lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 2-8, 2001
Buch, Englisch, Band 1813, 169 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 283 g
Reihe: Lecture Notes in Mathematics
ISBN: 978-3-540-40192-6
Verlag: Springer Berlin Heidelberg
Leading researchers in the field of Optimal Transportation, with different views and perspectives, contribute to this Summer School volume: Monge-Ampère and Monge-Kantorovich theory, shape optimization and mass transportation are linked, among others, to applications in fluid mechanics granular material physics and statistical mechanics, emphasizing the attractiveness of the subject from both a theoretical and applied point of view.
The volume is designed to become a guide to researchers willing to enter into this challenging and useful theory.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Geometrie Nicht-Euklidische Geometrie
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Mathematik | Informatik Mathematik Operations Research Spieltheorie
- Mathematik | Informatik Mathematik Geometrie Algebraische Geometrie
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
Weitere Infos & Material
Preface.- L.A. Caffarelli: The Monge-Ampère equation and Optimal Transportation, an elementary view.- G. Buttazzo, L. De Pascale: Optimal Shapes and Masses, and Optimal Transportation Problems.- C. Villani: Optimal Transportation, dissipative PDE's and functional inequalities.- Y. Brenier: Extended Monge-Kantorowich Theory.- L. Ambrosio, A. Pratelli: Existence and Stability results in the L1 Theory of Optimal Transportation.