Butler / Cooper / Hurlbert | Connections in Discrete Mathematics | Buch | 978-1-316-60788-6 | sack.de

Buch, Englisch, 364 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 533 g

Butler / Cooper / Hurlbert

Connections in Discrete Mathematics


Erscheinungsjahr 2019
ISBN: 978-1-316-60788-6
Verlag: Cambridge University Press

Buch, Englisch, 364 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 533 g

ISBN: 978-1-316-60788-6
Verlag: Cambridge University Press


Discrete mathematics has been rising in prominence in the past fifty years, both as a tool with practical applications and as a source of new and interesting mathematics. The topics in discrete mathematics have become so well developed that it is easy to forget that common threads connect the different areas, and it is through discovering and using these connections that progress is often made. For over fifty years, Ron Graham has been able to illuminate some of these connections and has helped to bring the field of discrete mathematics to where it is today. To celebrate his contribution, this volume brings together many of the best researchers working in discrete mathematics, including Fan Chung, Erik D. Demaine, Persi Diaconis, Peter Frankl, Alfred W. Hales, Jeffrey C. Lagarias, Allen Knutson, Janos Pach, Carl Pomerance, N. J. A. Sloane, and of course, Ron Graham himself.

Butler / Cooper / Hurlbert Connections in Discrete Mathematics jetzt bestellen!

Weitere Infos & Material


1. Probabilizing Fibonacci numbers Persi Diaconis; 2. On the number of ON cells in cellular automata N. J. A. Sloane; 3. Search for ultraflat polynomials with plus and minus one coefficients Andrew Odlyzko; 4. Generalized Goncharov polynomials Rudolph Lorenz, Salvatore Tringall and Catherine H. Yan; 5. The digraph drop polynomial Fan Chung and Ron Graham; 6. Unramified graph covers of finite degree Hau-Wen Huang and Wen-Ching Winnie Li; 7. The first function and its iterates Carl Pomerance; 8. Erdos, Klarner, and the 3x + 1 problem Jeffrey C. Lagarias; 9. A short proof for an extension of the Erdos–Ko–Rado theorem Peter Frankl and Andrey Kupavskii; 10. The Haight–Ruzsa method for sets with more differences than multiple sums Melvyn B. Nathanson; 11. Dimension and cut vertices William T. Trotter, Bartosz Walczak and Ruidong Wang; 12. Recent results on partition regularity of infinite matrices Neil Hindman; 13. Some remarks on pi Christian Reiher, Vojtech Rodl and Mathias Schacht; 14. Ramsey classes with closure operations Jan Hubicka and Jaroslav Nesetril; 15. Borsuk and Ramsey type questions in Euclidean space Peter Frankl, Janos Pach, Christian Reiher and Vojtech Rodl; 16. Pick's theorem and sums of lattice points Karl Levy and Melvyn B. Nathanson; 17. Apollonian ring packings Adrian Bolt, Steve Butler and Espen Hovland; 18. Juggling and card shuffling meet mathematical fonts Erik D. Demaine and Martin L. Demaine; 19. Randomly juggling backwards Allen Knutson; 20. Explicit error bounds for lattice Edgeworth expansions J. P. Buhler, A. C. Gamst, Ron Graham and Alfred W. Hales.


Hurlbert, Glenn
Glenn Hurlbert is Professor and Chair of the Department of Mathematics and Applied Mathematics at Virginia Commonwealth University. His research interests include universal cycles, extremal set theory, combinatorial optimization, combinatorial bijections and mathematical education, and he is recognized as a leader in the field of graph pebbling.

Cooper, Joshua
Joshua Cooper is Professor of Mathematics at the University of South Carolina. He currently serves on the editorial board of Involve. His research interests include spectral hypergraph theory, linear and multilinear algebra, probabilistic combinatorics, quasirandomness, combinatorial number theory, and computational complexity.

Butler, Steve
Steve Butler is Associate Professor of Mathematics at Iowa State University. His research interests include spectral graph theory, enumerative combinatorics, mathematics of juggling, and discrete geometry. He is the co-editor of The Mathematics of Paul Erdos (2013).



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.