Buch, Englisch, 456 Seiten, Format (B × H): 156 mm x 233 mm, Gewicht: 1460 g
Reihe: Modern Birkhäuser Classics
Buch, Englisch, 456 Seiten, Format (B × H): 156 mm x 233 mm, Gewicht: 1460 g
Reihe: Modern Birkhäuser Classics
ISBN: 978-0-8176-4991-3
Verlag: Birkhauser Boston
This monograph is a self-contained introduction to the geometry of Riemann Surfaces of constant curvature -1 and their length and eigenvalue spectra. It focuses on two subjects: the geometric theory of compact Riemann surfaces of genus greater than one, and the relationship of the Laplace operator with the geometry of such surfaces. Research workers and graduate students interested in compact Riemann surfaces will find here a number of useful tools and insights to apply to their investigations.
Zielgruppe
Graduate
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Hyperbolic Structures.- Trigonometry.- Y-Pieces and Twist Parameters.- The Collar Theorem.- Bers’ Constant and the Hairy Torus.- The Teichmüller Space.- The Spectrum of the Laplacian.- Small Eigenvalues.- Closed Geodesics and Huber’s Theorem.- Wolpert’s Theorem.- Sunada’s Theorem.- Examples of Isospectral Riemann Surfaces.- The Size of Isospectral Families.- Perturbations of the Laplacian in Teichmüller Space.