Burrows / Borrell / Platt | The Remote Sensing of Tropospheric Composition from Space | E-Book | sack.de
E-Book

E-Book, Englisch, 551 Seiten, eBook

Reihe: Physics of Earth and Space Environments

Burrows / Borrell / Platt The Remote Sensing of Tropospheric Composition from Space

E-Book, Englisch, 551 Seiten, eBook

Reihe: Physics of Earth and Space Environments

ISBN: 978-3-642-14791-3
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



The impact of anthropogenic activities on our atmospheric environment is of growing public concern and satellite-based techniques now provide an essential component of observational strategies on regional and global scales. The purpose of this book is to summarise the state of the art in the field in general, while describing both key techniques and findings in particular. It opens with an historical perspective of the field together with the basic principles of remote sensing from space. Three chapters follow on the techniques and on the solutions to the problems associated with the various spectral regions in which observations are made. The particular challenges posed by aerosols and clouds are covered in the next two chapters. Of special importance is the accuracy and reliability of remote sensing data and these issues are covered in a chapter on validation. The final section of the book is concerned with the exploitation of data, with chapters on observational aspects, which includes both individual and synergistic studies, and on the comparison of global and regional observations with chemical transport and climate models and the added value that the interaction brings to both. The book concludes with scientific needs and likely future developments in the field, and the necessary actions to be taken if we are to have the global observation system that the Earth needs in its present, deteriorating state. The appendices provide a comprehensive list of satellite instruments, global representations of some ancillary data such as fire counts and light pollution, a list of abbreviations and acronyms, and a set of colourful timelines indicating the satellite coverage of tropospheric composition in the foreseeable future. Altogether, this book will be a timely reference and overview for anyone working at the interface of environmental, atmospheric and space sciences.
Burrows / Borrell / Platt The Remote Sensing of Tropospheric Composition from Space jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1;The Remote Sensing of Tropospheric Composition from Space;3
1.1;Preface;5
1.2;Acknowledgements;7
1.3;Contents;9
1.4;Contributors;19
1.5;List of Tables;23
1.6;List of Figures;25
1.7;Chemical Names and Molecular Formulae;31
1.8;Chapter 1: Tropospheric Remote Sensing from Space;33
1.8.1;1.1 Remote Sensing and the Scope of the Book;33
1.8.2;1.2 Earth Observation and Remote Sensing;35
1.8.3;1.3 Atmospheric Remote Sensing from Space;37
1.8.3.1;1.3.1 Pre-Satellite Days;37
1.8.3.2;1.3.2 Some Historical Milestones in Satellite Remote Sensing ;38
1.8.3.3;1.3.3 Tropospheric Remote Sensing Using Back-Scattered Solar Radiation;39
1.8.3.4;1.3.4 Remote Sensing Using Thermal Infrared in the Troposphere;41
1.8.3.5;1.3.5 TROPOSAT and AT2;42
1.8.4;1.4 The Atmosphere, Tropospheric Chemistry and Air Pollution;43
1.8.4.1;1.4.1 The Physical Structure of the Atmosphere;43
1.8.4.2;1.4.2 Tropospheric Chemistry;45
1.8.4.2.1;a Free Radical Reactions in the Troposphere;46
1.8.4.2.2;b Stable Species in the Troposphere;48
1.8.4.3;1.4.3 Air Pollution and Environmental Policy;49
1.8.4.4;1.4.4 Environmental Issues of Relevance to the Troposphere;51
1.8.4.4.1;a Global Increase of Tropospheric Ozone and the Effect on Air Quality;51
1.8.4.4.2;b The Transport and Transformation of Pollutants;52
1.8.4.4.3;c Biomass Burning and Fire;52
1.8.4.4.4;d Persistent Organic Pollutants;53
1.8.4.4.5;e Acid Deposition;53
1.8.4.4.6;f Global Climate Change;54
1.8.4.4.7;g Stratospheric Ozone Depletion and Its Impact on the Troposphere;54
1.8.5;1.5 Measuring Atmospheric Composition;56
1.8.5.1;1.5.1 Long Term Observations;56
1.8.5.2;1.5.2 Regional and Episodic Studies ;57
1.8.5.3;1.5.3 Investigation of Fast In Situ Photochemistry;57
1.8.5.4;1.5.4 In Situ Observational Techniques;57
1.8.5.5;1.5.5 Remote Sensing Versus In Situ Techniques;58
1.8.5.6;1.5.6 The Need for Global Tropospheric Measurements from Space ;59
1.8.6;1.6 Electromagnetic Radiation and Molecular Energy Levels;60
1.8.6.1;1.6.1 Electromagnetic Radiation;60
1.8.6.1.1;a Scattering and Absorption of Radiation;61
1.8.6.1.2;b Spontaneous Emission, Stimulated Absorption and Emission;62
1.8.6.1.3;c Raman Scattering;62
1.8.6.2;1.6.2 Molecular Energy States;63
1.8.6.2.1;a Rotational Energy Levels and Transitions;63
1.8.6.2.1.1;Selection Rules for Rotational Transitions;64
1.8.6.2.2;b Vibrational Energy Levels and Transitions;64
1.8.6.2.3;c Electronic Energy States and Transitions;66
1.8.6.2.4;d The Populations of Molecular Energy States;66
1.8.7;1.7 Molecular Spectra and Line Broadening ;67
1.8.7.1;1.7.1 Line Broadening Mechanisms and the Width of Absorption Lines;68
1.8.7.2;1.7.2 The Natural Linewidth;69
1.8.7.3;1.7.3 Pressure Broadening (Collisional Broadening);69
1.8.7.4;1.7.4 Doppler Broadening;70
1.8.7.5;1.7.5 Atmospheric Spectral Line Shapes in Different Spectral Ranges;71
1.8.8;1.8 Spectroscopic Techniques for Chemical Analysis;72
1.8.8.1;1.8.1 Absorption Spectroscopy;72
1.8.8.2;1.8.2 Emission Spectroscopy;74
1.8.9;1.9 Atmospheric Scattering and Radiation Transfer;74
1.8.9.1;1.9.1 Scattering;75
1.8.9.1.1;a Rayleigh Scattering;75
1.8.9.1.2;b Raman Scattering;76
1.8.9.1.3;c Mie Scattering;76
1.8.9.1.4;d Total Scattering;77
1.8.9.2;1.9.2 Atmospheric Radiative Transfer;78
1.8.10;1.10 Remote Sensing: Images and Spectroscopy;81
1.8.10.1;1.10.1 Satellite Images;81
1.8.10.2;1.10.2 Spectroscopic Techniques in Remote Sensing;82
1.8.10.2.1;a Microwave Spectroscopy;83
1.8.10.2.2;b IR Spectroscopy;84
1.8.10.2.3;c UV/Visible/Short-Wave IR Absorption Spectroscopy;85
1.8.10.3;1.10.3 Passive and Active Remote Sensing;85
1.8.10.4;1.10.4 Nadir, Limb and Occultation Views;85
1.8.10.4.1;a Nadir view;85
1.8.10.4.2;b Multiple Views;86
1.8.10.4.3;c Limb Mode;87
1.8.10.4.4;d Occultation;87
1.8.10.5;1.10.5 Active Techniques;88
1.8.10.5.1;a Differential Absorption Lidar (DIAL);89
1.8.11;1.11 Satellite Orbits;90
1.8.11.1;1.11.1 Low Earth Orbits (LEO);90
1.8.11.2;1.11.2 Geostationary Orbits (GEO);91
1.8.12;1.12 Summary;93
1.8.13;References;93
1.9;Chapter 2: The Use of UV, Visible and Near IR Solar Back Scattered Radiation to Determine Trace Gases;98
1.9.1;2.1 Basics and Historical Background;98
1.9.1.1;2.1.1 Satellite Observations in the UV/vis/NIR Spectral Range;101
1.9.1.2;2.1.2 Spectral Retrieval and Radiative Transfer Modelling;104
1.9.2;2.2 Spectral Retrieval;105
1.9.2.1;2.2.1 Discrete Wavelength Techniques;107
1.9.2.1.1;a Initial Intensity I0;107
1.9.2.1.2;b Separating Different Effects;107
1.9.2.1.3;c The Light Path;108
1.9.2.2;2.2.2 DOAS Type Retrievals;109
1.9.2.3;2.2.3 Some Considerations for DOAS Retrievals;111
1.9.2.3.1;a Fraunhofer Spectrum;111
1.9.2.3.2;b The Ring Effect;112
1.9.2.3.3;c Choice of Fitting Window;113
1.9.2.3.4;d Effects of Spectral Surface Reflectivity;114
1.9.2.4;2.2.4 Advanced DOAS Concepts;114
1.9.3;2.3 Interpretation of the Observations Using Radiative Transfer Modelling;117
1.9.3.1;2.3.1 Relevant Interaction Processes Between Radiation and Matter;117
1.9.3.1.1;a Molecular Scattering;117
1.9.3.1.2;b Particle Scattering;119
1.9.3.1.3;c Reflection and Absorption at the Surface;120
1.9.3.1.4;d Interactions at the Ocean Surface;120
1.9.3.1.5;e Molecular Absorption Processes ;121
1.9.3.2;2.3.2 Quantities Used for the Characterisation of the Measurement Sensitivity;122
1.9.3.2.1;a The Total AMF;122
1.9.3.2.2;b Box-AMF and Weighting Functions;123
1.9.3.2.3;c Averaging Kernels;126
1.9.3.2.4;d 2-D and 3-D Box-AMF;128
1.9.3.3;2.3.3 Important Input Data ;129
1.9.3.4;2.3.4 Overview of Existing Radiative Transfer Models;130
1.9.4;2.4 Separation of Tropospheric and Stratospheric Signals;132
1.9.4.1;2.4.1 Stratospheric Measurement Methods;133
1.9.4.2;2.4.2 Residual Methods;134
1.9.4.3;2.4.3 Model Method;134
1.9.4.4;2.4.4 Cloud Slicing method;135
1.9.4.5;2.4.5 Other Possible Approaches;135
1.9.5;2.5 Uncertainties in UV/vis/NIR Satellite Measurements;136
1.9.5.1;2.5.1 Instrument Noise and Stray Light;137
1.9.5.2;2.5.2 Spectroscopic Uncertainties and Instrument Slit Width;138
1.9.5.3;2.5.3 Spectral Interference;138
1.9.5.4;2.5.4 Light Path Uncertainties;139
1.9.5.5;2.5.5 Uncertainty of Separation Between Stratosphere and Troposphere;140
1.9.6;2.6 Synopsis of the Historic, and Existing, Instruments and Data Products;141
1.9.7;2.7 Example of the Retrieval Process;142
1.9.8;2.8 Future Developments;144
1.9.8.1;2.8.1 Technical Design;144
1.9.8.2;2.8.2 Data Analysis;146
1.9.8.3;2.8.3 Synergistic Use of Complementary Satellite Observations;146
1.9.9;References;147
1.10;Chapter 3: Using Thermal Infrared Absorption and Emission to Determine Trace Gases;153
1.10.1;3.1 Physical Principles;153
1.10.2;3.2 Thermal Infrared Instruments: Techniques, History, Specificity;157
1.10.2.1;3.2.1 Techniques;157
1.10.2.1.1;a Cell Correlation Radiometry;157
1.10.2.1.2;b Fourier Transform Spectroscopy;157
1.10.2.1.3;c Grating Spectrometry;158
1.10.2.2;3.2.2 History ;158
1.10.2.3;3.2.3 Specificity;159
1.10.2.3.1;a Retrieval Algorithms/Inversions;160
1.10.2.3.2;b Forward Radiative Transfer;160
1.10.2.3.3;c The Optimal Estimation (OE) Formalism;161
1.10.2.3.3.1;i Finding an Optimal Solution;161
1.10.2.3.3.2;ii Information Content;161
1.10.2.3.3.3;iii Error Budget;162
1.10.2.3.4;d The Tikhonov-Philips Regularization;163
1.10.2.3.5;e Neural Networks;163
1.10.3;3.3 Thermal Infrared: Missions and Products ;165
1.10.4;3.4 Examples;165
1.10.4.1;3.4.1 Limb and Solar Occultation Instruments;165
1.10.4.1.1;a ACE-FTS;165
1.10.4.1.2;b MIPAS;168
1.10.4.1.3;c HIRDLS;170
1.10.4.2;3.4.2 Nadir Looking Instruments;171
1.10.4.2.1;a IMG;171
1.10.4.2.2;b MOPITT;171
1.10.4.2.3;c AIRS;172
1.10.4.2.4;d TES;173
1.10.4.2.5;e IASI;174
1.10.5;3.5 Future Plans for Tropospheric Sounders ;175
1.10.6;References;177
1.11;Chapter 4: Microwave Absorption, Emission and Scattering: Trace Gases and Meteorological Parameters;182
1.11.1;4.1 Introduction;182
1.11.2;4.2 Atmospheric Remote Sensing in the Microwave range;183
1.11.2.1;4.2.1 Vector and Scalar Radiative Transfer;183
1.11.2.2;4.2.2 Gas Absorption in the Microwave Region;185
1.11.2.3;4.2.3 Particle Extinction in the Microwave Region;186
1.11.2.4;4.2.4 Simulation Software;187
1.11.2.5;4.2.5 The Inverse Problem;189
1.11.2.6;4.2.6 Observing Technique;191
1.11.3;4.3 Temperature and Water Vapour Profiles;193
1.11.3.1;4.3.1 Introduction;193
1.11.3.2;4.3.2 Examples;195
1.11.4;4.4 Remote Sensing of Clouds and precipitation ;196
1.11.4.1;4.4.1 Introduction;196
1.11.4.2;4.4.2 Retrieval of Cloud Liquid Water;199
1.11.4.3;4.4.3 Retrieval of Cloud Ice Water;201
1.11.4.4;4.4.4 Precipitation;203
1.11.5;4.5 Applications of Microwave Data in Operational Meteorology ;206
1.11.5.1;4.5.1 Data Assimilation;206
1.11.5.2;4.5.2 Microwave Data in Operational Meteorology;206
1.11.5.3;4.5.3 Microwave Radiative Transfer Modelling in Data Assimilation;208
1.11.5.4;4.5.4 Impact of Remote Sensing Data on NWP;210
1.11.5.5;4.5.5 Conclusions;213
1.11.6;4.6 Microwave Limb Sounding of the Troposphere;215
1.11.6.1;4.6.1 Background to Microwave Limb Sounding of the Troposphere;215
1.11.6.2;4.6.2 Previous, Existing and Planned Microwave Limb Sounding Instruments;216
1.11.6.3;4.6.3 Applications of Microwave Limb Sounding of the Troposphere;217
1.11.6.4;4.6.4 Upper Tropospheric Composition and Chemistry;220
1.11.6.5;4.6.5 Conclusions;222
1.11.7;4.7 Active Techniques;224
1.11.7.1;4.7.1 Introduction;224
1.11.7.2;4.7.2 The CloudSat Radar;225
1.11.7.3;4.7.3 The CloudSat Mission;225
1.11.7.4;4.7.4 The Cloud Profiling Radar;226
1.11.7.5;4.7.5 The Tropical Rainfall Measurement Mission;227
1.11.7.6;4.7.6 Results from TRMM;229
1.11.7.7;4.7.7 Conclusions;232
1.11.8;4.8 Measuring Atmospheric Parameters Using the Global Positioning System;233
1.11.8.1;4.8.1 GPS Radio Occultation;233
1.11.8.2;4.8.2 Data Availability and Impact;234
1.11.8.3;4.8.3 Ground-Based GPS Observations;236
1.11.8.4;4.8.4 Impact Studies;239
1.11.9;4.9 Outlook ;240
1.11.10;4.10 Tables of Microwave Sensors;242
1.11.11;References;244
1.12;Chapter 5: Remote Sensing of Terrestrial Clouds from Space using Backscattering and Thermal Emission Techniques;260
1.12.1;5.1 Introduction;260
1.12.2;5.2 Cloud Parameters and Their Retrievals;261
1.12.2.1;5.2.1 Cloud Cover;262
1.12.2.2;5.2.2 Cloud Phase;264
1.12.2.3;5.2.3 Cloud Optical Thickness;266
1.12.2.4;5.2.4 Effective Radius;268
1.12.2.5;5.2.5 Cloud Liquid Water and Ice Path;272
1.12.2.6;5.2.6 Cloud Top Height;273
1.12.3;5.3 Validation of Satellite Cloud Products;276
1.12.4;5.4 Modern Trends in Optical Cloud Remote Sensing from Space ;278
1.12.4.1;5.4.1 Hyperspectral Remote Sensing;278
1.12.4.2;5.4.2 Lidar Remote Sensing;280
1.12.4.3;5.4.3 Future Missions;281
1.12.5;5.5 Conclusions;283
1.12.6;References;283
1.13;Chapter 6: Retrieval of Aerosol Properties;287
1.13.1;6.1 Introduction;287
1.13.2;6.2 Aerosol Retrieval Algorithms;292
1.13.3;6.3 Aerosol Optical Parameters;294
1.13.4;6.4 Databases for Aerosol Properties;297
1.13.5;6.5 Instruments Used for the Retrieval of Aerosol Properties from Space;298
1.13.6;6.6 Retrieval of Aerosol and Cloud Parameters from CALIPSO Observations;299
1.13.6.1;6.6.1 The CALIPSO Science Payload ;300
1.13.6.2;6.6.2 CALIOP Data Calibration;301
1.13.6.3;6.6.3 Description of Available Data Products from CALIOP;302
1.13.6.4;6.6.4 CALIOP Retrieval Procedure for the Extinction Coefficient;303
1.13.7;6.7 Aerosol Remote Sensing from POLDER;304
1.13.7.1;6.7.1 POLDER Remote Sensing of Aerosols Over Ocean Surfaces;305
1.13.7.2;6.7.2 POLDER Remote Sensing of Aerosols Over Land Surfaces;306
1.13.8;6.8 Retrieval of Aerosol Properties Using AATSR;307
1.13.8.1;6.8.1 AATSR Characteristics;308
1.13.8.2;6.8.2 AATSR Retrieval Algorithm;308
1.13.8.3;6.8.3 AATSR Products;309
1.13.9;6.9 Aerosol Remote Sensing from Aqua/MODIS;311
1.13.9.1;6.9.1 MODIS Remote Sensing of Aerosols Over Ocean Surfaces;311
1.13.9.2;6.9.2 MODIS Remote Sensing of Aerosols Over Land ;312
1.13.10;6.10 Aerosol Properties from OMI;312
1.13.10.1;6.10.1 Properties from OMI Using the Multi-Wavelength Algorithm;315
1.13.10.2;6.10.2 Status of the OMAERO Product ;316
1.13.11;6.11 Retrieval of Aerosol Properties Using MERIS ;317
1.13.12;6.12 Validation;320
1.13.13;6.13 Air Quality: Using AOD to Monitor PM2.5 in the Netherlands;320
1.13.13.1;6.13.1 Establishing an AOD-PM2.5 Relationship;322
1.13.13.2;6.13.2 Application of the AOD-PM2.5 Relationship to MODIS Data;324
1.13.14;6.14 Application to Climate: Aerosol Direct Radiative Forcing;325
1.13.14.1;6.14.1 Uncertainties in Aerosol Direct Radiative Forcing;327
1.13.14.2;6.14.2 Comparisons of Aerosol Radiative Forcing with Models;328
1.13.14.3;6.14.3 Aerosol Radiative Forcing: Conclusions;329
1.13.15;6.15 Use of Satellites for Aerosol-Cloud Interaction Studies;329
1.13.15.1;a SEVIRI;330
1.13.15.2;b PARASOL;330
1.13.15.3;c MODIS;330
1.13.15.4;d OMI;331
1.13.15.5;e CALIPSO;331
1.13.16;6.16 Intercomparison of Aerosol Retrieval Products;331
1.13.17;6.17 Conclusions;332
1.13.18;References;334
1.14;Chapter 7: Data Quality and Validation of Satellite Measurements of Tropospheric Composition;342
1.14.1;7.1 Introduction;342
1.14.2;7.2 Methods of Validation;346
1.14.2.1;7.2.1 Definitions;346
1.14.2.2;7.2.2 Comparing Data Sets;347
1.14.2.2.1;a Finding Collocated Data;347
1.14.2.2.2;b Selection and Filtering;348
1.14.2.2.3;c Data Treatment;349
1.14.2.2.3.1;Vertical Representation;349
1.14.2.2.3.2;Time Differences;350
1.14.2.2.3.3;Horizontal Representation;350
1.14.2.2.3.4;Noise Reduction;352
1.14.2.2.4;d Analysing the Data;352
1.14.2.3;7.2.3 Use of Models ;355
1.14.2.4;7.2.4 Data Variability;356
1.14.3;7.3 Quality Assurance;357
1.14.3.1;7.3.1 Validation and Mission Planning;358
1.14.3.2;7.3.2 Calibration;358
1.14.3.2.1;a Viewing Geometry;358
1.14.3.2.2;b Wavelength;359
1.14.3.2.3;c Absolute Radiance;359
1.14.3.3;7.3.3 Lower-Level Data Products;359
1.14.3.4;7.3.4 Retrieval Algorithm Optimisation;360
1.14.3.5;7.3.5 Instrument Degradation ;360
1.14.3.6;7.3.6 Overall Quality Monitoring ;361
1.14.4;7.4 Validation Characteristics of Tropospheric Products;362
1.14.4.1;7.4.1 Tropospheric Processes Impacting on Trace Gas Distributions;363
1.14.4.2;7.4.2 Validation Needs for Trace Gases with Stratospheric Contributions;365
1.14.4.2.1;a What Causes Stratospheric Variability?;365
1.14.4.2.2;b What Determines the Vertical Distribution of these Species?;367
1.14.4.3;7.4.3 Validation Needs Related to Cloud, Albedo and Aerosol Effects;368
1.14.4.4;7.4.4 Validation Needs for Aerosols;370
1.14.5;7.5 The Use of Correlative Measurements for Validation;371
1.14.5.1;7.5.1 In Situ Measurements;371
1.14.5.1.1;a In Situ Measurements for O3 and CO;373
1.14.5.1.2;b In Situ Measurement Techniques for NO2;375
1.14.5.1.3;c Factors Impacting on the Use of In Situ Measurements for Satellite NO2 Data Validation;376
1.14.5.2;7.5.2 Remote Sensing;376
1.14.5.2.1;a Multi-Axis Differential Optical Absorption Spectroscopy (MAXDOAS) ;377
1.14.5.2.2;b Fourier Transform Infrared Spectroscopy (FTIR) ;379
1.14.5.2.3;c Light Detection and Ranging (lidar) ;379
1.14.5.2.4;d Sun Photometers;380
1.14.5.3;7.5.3 Networks and Data Centres ;380
1.14.5.4;7.5.4 Validation Activities;381
1.14.6;7.6 Future Validation strategies;381
1.14.6.1;7.6.1 Requirements for Future Validation Measurements;381
1.14.6.2;7.6.2 Validation Strategy for Tropospheric O3;382
1.14.6.3;7.6.3 Validation Strategy for Tropospheric NO2;382
1.14.6.4;7.6.4 Validation Strategy for CO;384
1.14.7;References;384
1.15;Chapter 8: Applications of Satellite Observations of Tropospheric Composition ;392
1.15.1;8.1 Introduction;392
1.15.2;8.2 Overview of the Tropospheric Chemical Species Measured from Space;393
1.15.2.1;8.2.1 Tropospheric Ozone, O3;393
1.15.2.2;8.2.2 Nitrogen Dioxide, NO2;395
1.15.2.3;8.2.3 Carbon Monoxide, CO;398
1.15.2.3.1;a General Transport Phenomena;400
1.15.2.3.2;b Hemispheric Transport of Air Pollution;401
1.15.2.3.3;c Emission Estimates;402
1.15.2.3.4;d Fires (Biomass Burning);403
1.15.2.3.5;e Model Performance;404
1.15.2.4;8.2.4 Formaldehyde, HCHO;405
1.15.2.5;8.2.5 Glyoxal, CHOCHO;406
1.15.2.6;8.2.6 Sulfur Dioxide, SO2;407
1.15.2.7;8.2.7 Ammonia, NH3;409
1.15.2.8;8.2.8 Carbon Dioxide, CO2;409
1.15.2.9;8.2.9 Methane, CH4;411
1.15.2.10;8.2.10 Water, H2O;412
1.15.2.11;8.2.11 Bromine Monoxide, BrO;413
1.15.2.12;8.2.12 Iodine Monoxide, IO;415
1.15.2.13;8.2.13 Methanol, CH3OH;416
1.15.2.14;8.2.14 Nitrous Oxide, N2O;417
1.15.2.15;8.2.15 Nitric Acid, HNO3;418
1.15.2.16;8.2.16 Other Trace Species;418
1.15.3;8.3 Satellite Observations of Tropospheric Composition: What Can We Learn?;426
1.15.3.1;8.3.1 Column Density Maps as Proxies for Emissions ;426
1.15.3.2;8.3.2 Monitoring Transport and Circulation;431
1.15.3.3;8.3.3 Trends;434
1.15.3.4;8.3.4 Periodical Temporal Patterns;437
1.15.3.5;8.3.5 Synergistic Use of Different Measurements;438
1.15.3.5.1;a Improving Retrievals;439
1.15.3.5.2;b Identifying Sources;439
1.15.3.5.3;c Learning About Atmospheric Chemistry;440
1.15.3.5.4;d Learning About Profiles;440
1.15.3.5.5;e Multi-Platform Observations;441
1.15.3.6;8.3.6 Operational Use;443
1.15.4;8.4 Summary and Outlook;444
1.15.5;References;445
1.16;Chapter 9: Synergistic Use of Retrieved Trace Constituent Distributions and Numerical Modelling;477
1.16.1;9.1 Introduction ;477
1.16.2;9.2 Use of Satellite Data for Process Understanding and Model Evaluation;480
1.16.2.1;9.2.1 Understanding Atmospheric Chemistry ;481
1.16.2.1.1;a Formaldehyde, HCHO: A Proxy for VOC Emissions ;482
1.16.2.1.2;b Glyoxal, CHOCHO: Source Apportionment ;483
1.16.2.1.3;c Determining Dominant Chemical Pathways: Air Pollution Impact;485
1.16.2.1.4;d Understanding Differences Between Retrievals and Model Results;486
1.16.2.2;9.2.2 Model Evaluations - Comparison with Observation;487
1.16.2.2.1;a NO2;488
1.16.2.2.2;b CO;490
1.16.2.2.3;c Aerosol;492
1.16.3;9.3 Inverse Modelling;493
1.16.3.1;9.3.1 Inversions for Short-Lived Species;493
1.16.3.2;9.3.2 Inversions for CO and CH4 ;497
1.16.3.3;9.3.3 Need for Future Developments;498
1.16.4;9.4 Data Assimilation;499
1.16.4.1;9.4.1 Objectives and State of the Art Approaches;499
1.16.4.2;9.4.2 Example Results for Tropospheric O3 assimilation;501
1.16.4.3;9.4.3 Example Results for NO2 Tropospheric Column Assimilation;502
1.16.4.4;9.4.4 Aerosol Satellite Data Assimilation;504
1.16.5;9.5 Summary: Perspectives;507
1.16.6;9.6 Appendix;508
1.16.7;Inverse Modelling: Principles;508
1.16.8;References;511
1.17;Chapter 10: Conclusions and Perspectives;519
1.17.1;10.1 Introduction: The Need for Satellite Observations;519
1.17.2;10.2 Some Scientific Highlights;521
1.17.2.1;10.2.1 Observed Compounds;521
1.17.2.2;10.2.2 The Multiple Roles of NO2;522
1.17.2.3;10.2.3 Industrial Emissions and Biomass Burning;522
1.17.2.4;10.2.4 Ozone, O3;523
1.17.2.5;10.2.5 Greenhouse Gases;523
1.17.2.6;10.2.6 Water Vapour, and Other Hydrological and Cloud Parameters;524
1.17.2.7;10.2.7 Aerosol and Cloud Parameters;524
1.17.2.8;10.2.8 Volcanic Emissions;526
1.17.3;10.3 Scientific Needs;526
1.17.4;10.4 Further Interpretation of Data from Current Instrumentation;528
1.17.4.1;10.4.1 Retrieval Algorithm Developments;528
1.17.4.2;10.4.2 The Use of Multiple Observations;529
1.17.4.3;10.4.3 Data Assimilation;529
1.17.5;10.5 Idealised Requirements for the Evolution of Instrumentation;530
1.17.6;10.6 Perspectives for the Improvement of Instrument Technology;531
1.17.6.1;10.6.1 Polarisation Measurements;531
1.17.6.2;10.6.2 Measurements for Tomographic Reconstruction;532
1.17.6.3;10.6.3 Multi-Wavelength Hyper-Spectral Measurements;532
1.17.6.4;10.6.4 Multi-Instrument Measurements ;532
1.17.6.5;10.6.5 Microwave and Sub-mm Spectral Region;532
1.17.6.6;10.6.6 Active Systems;532
1.17.7;10.7 Current and Future Planned Missions;533
1.17.7.1;10.7.1 LEO Satellite Instruments;533
1.17.7.2;10.7.2 GEO Satellite Instruments;534
1.17.7.3;10.7.3 Greenhouse Gases;535
1.17.7.4;10.7.4 Observations from the Lagrange Point;536
1.17.8;10.8 Future Monitoring of the Troposphere from Space;536
1.17.9;10.9 Conclusions;538
1.17.10;References;539
1.18;Appendices;541
1.18.1;Appendix A: Satellite Instruments for the Remote Sensing in the UV, Visible and IR;541
1.18.1.1;Abbreviations Used in the Table;541
1.18.2;Appendix B: Atlas of Ancillary Global Data;548
1.18.3;Appendix C: Abbreviations and Acronyms;550
1.18.4;Appendix D: Timelines for Present and Future Missions;558
1.18.4.1;D.1Tropospheric Reactive Gases;558
1.18.4.2;D.2Greenhouse Gases: CH4, CO2;560
1.18.4.3;D.3Greenhouse Gases: Water Vapour;561
1.18.4.4;D.4Tropospheric Aerosol;562
1.18.4.5;D.5Clouds;563
1.19;Index;565

Tropospheric Remote Sensing From Space.- Solar Backscattered Radiation: UV, Visible and near IR-Trace Gases.- Thermal Infrared: Absorption and Emission - Trace Gases and Parameters.- Microwave: Absorption and Emission - Trace Gases and Metereological Parameters.- Remote Sensing of Terrestrial Clouds from Space using Backscattering and Thermal Emission Techniques.- Retrieval of Aerosol Properties.- Data Quality and Validation of Satellite Measurements of Tropospheric Composition.- Applications: Satellite Observations of Tropospheric Compostion.- Applications - Data and Models: Synergetic Use of Satellite Retrieved Trophospheric Trace Constituent Distributions and Numerical Modelling.- Conclusions and Perspectives.- Appendices.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.