E-Book, Englisch, 551 Seiten, eBook
Reihe: Physics of Earth and Space Environments
ISBN: 978-3-642-14791-3
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;The Remote Sensing of Tropospheric Composition from Space;3
1.1;Preface;5
1.2;Acknowledgements;7
1.3;Contents;9
1.4;Contributors;19
1.5;List of Tables;23
1.6;List of Figures;25
1.7;Chemical Names and Molecular Formulae;31
1.8;Chapter 1: Tropospheric Remote Sensing from Space;33
1.8.1;1.1 Remote Sensing and the Scope of the Book;33
1.8.2;1.2 Earth Observation and Remote Sensing;35
1.8.3;1.3 Atmospheric Remote Sensing from Space;37
1.8.3.1;1.3.1 Pre-Satellite Days;37
1.8.3.2;1.3.2 Some Historical Milestones in Satellite Remote Sensing ;38
1.8.3.3;1.3.3 Tropospheric Remote Sensing Using Back-Scattered Solar Radiation;39
1.8.3.4;1.3.4 Remote Sensing Using Thermal Infrared in the Troposphere;41
1.8.3.5;1.3.5 TROPOSAT and AT2;42
1.8.4;1.4 The Atmosphere, Tropospheric Chemistry and Air Pollution;43
1.8.4.1;1.4.1 The Physical Structure of the Atmosphere;43
1.8.4.2;1.4.2 Tropospheric Chemistry;45
1.8.4.2.1;a Free Radical Reactions in the Troposphere;46
1.8.4.2.2;b Stable Species in the Troposphere;48
1.8.4.3;1.4.3 Air Pollution and Environmental Policy;49
1.8.4.4;1.4.4 Environmental Issues of Relevance to the Troposphere;51
1.8.4.4.1;a Global Increase of Tropospheric Ozone and the Effect on Air Quality;51
1.8.4.4.2;b The Transport and Transformation of Pollutants;52
1.8.4.4.3;c Biomass Burning and Fire;52
1.8.4.4.4;d Persistent Organic Pollutants;53
1.8.4.4.5;e Acid Deposition;53
1.8.4.4.6;f Global Climate Change;54
1.8.4.4.7;g Stratospheric Ozone Depletion and Its Impact on the Troposphere;54
1.8.5;1.5 Measuring Atmospheric Composition;56
1.8.5.1;1.5.1 Long Term Observations;56
1.8.5.2;1.5.2 Regional and Episodic Studies ;57
1.8.5.3;1.5.3 Investigation of Fast In Situ Photochemistry;57
1.8.5.4;1.5.4 In Situ Observational Techniques;57
1.8.5.5;1.5.5 Remote Sensing Versus In Situ Techniques;58
1.8.5.6;1.5.6 The Need for Global Tropospheric Measurements from Space ;59
1.8.6;1.6 Electromagnetic Radiation and Molecular Energy Levels;60
1.8.6.1;1.6.1 Electromagnetic Radiation;60
1.8.6.1.1;a Scattering and Absorption of Radiation;61
1.8.6.1.2;b Spontaneous Emission, Stimulated Absorption and Emission;62
1.8.6.1.3;c Raman Scattering;62
1.8.6.2;1.6.2 Molecular Energy States;63
1.8.6.2.1;a Rotational Energy Levels and Transitions;63
1.8.6.2.1.1;Selection Rules for Rotational Transitions;64
1.8.6.2.2;b Vibrational Energy Levels and Transitions;64
1.8.6.2.3;c Electronic Energy States and Transitions;66
1.8.6.2.4;d The Populations of Molecular Energy States;66
1.8.7;1.7 Molecular Spectra and Line Broadening ;67
1.8.7.1;1.7.1 Line Broadening Mechanisms and the Width of Absorption Lines;68
1.8.7.2;1.7.2 The Natural Linewidth;69
1.8.7.3;1.7.3 Pressure Broadening (Collisional Broadening);69
1.8.7.4;1.7.4 Doppler Broadening;70
1.8.7.5;1.7.5 Atmospheric Spectral Line Shapes in Different Spectral Ranges;71
1.8.8;1.8 Spectroscopic Techniques for Chemical Analysis;72
1.8.8.1;1.8.1 Absorption Spectroscopy;72
1.8.8.2;1.8.2 Emission Spectroscopy;74
1.8.9;1.9 Atmospheric Scattering and Radiation Transfer;74
1.8.9.1;1.9.1 Scattering;75
1.8.9.1.1;a Rayleigh Scattering;75
1.8.9.1.2;b Raman Scattering;76
1.8.9.1.3;c Mie Scattering;76
1.8.9.1.4;d Total Scattering;77
1.8.9.2;1.9.2 Atmospheric Radiative Transfer;78
1.8.10;1.10 Remote Sensing: Images and Spectroscopy;81
1.8.10.1;1.10.1 Satellite Images;81
1.8.10.2;1.10.2 Spectroscopic Techniques in Remote Sensing;82
1.8.10.2.1;a Microwave Spectroscopy;83
1.8.10.2.2;b IR Spectroscopy;84
1.8.10.2.3;c UV/Visible/Short-Wave IR Absorption Spectroscopy;85
1.8.10.3;1.10.3 Passive and Active Remote Sensing;85
1.8.10.4;1.10.4 Nadir, Limb and Occultation Views;85
1.8.10.4.1;a Nadir view;85
1.8.10.4.2;b Multiple Views;86
1.8.10.4.3;c Limb Mode;87
1.8.10.4.4;d Occultation;87
1.8.10.5;1.10.5 Active Techniques;88
1.8.10.5.1;a Differential Absorption Lidar (DIAL);89
1.8.11;1.11 Satellite Orbits;90
1.8.11.1;1.11.1 Low Earth Orbits (LEO);90
1.8.11.2;1.11.2 Geostationary Orbits (GEO);91
1.8.12;1.12 Summary;93
1.8.13;References;93
1.9;Chapter 2: The Use of UV, Visible and Near IR Solar Back Scattered Radiation to Determine Trace Gases;98
1.9.1;2.1 Basics and Historical Background;98
1.9.1.1;2.1.1 Satellite Observations in the UV/vis/NIR Spectral Range;101
1.9.1.2;2.1.2 Spectral Retrieval and Radiative Transfer Modelling;104
1.9.2;2.2 Spectral Retrieval;105
1.9.2.1;2.2.1 Discrete Wavelength Techniques;107
1.9.2.1.1;a Initial Intensity I0;107
1.9.2.1.2;b Separating Different Effects;107
1.9.2.1.3;c The Light Path;108
1.9.2.2;2.2.2 DOAS Type Retrievals;109
1.9.2.3;2.2.3 Some Considerations for DOAS Retrievals;111
1.9.2.3.1;a Fraunhofer Spectrum;111
1.9.2.3.2;b The Ring Effect;112
1.9.2.3.3;c Choice of Fitting Window;113
1.9.2.3.4;d Effects of Spectral Surface Reflectivity;114
1.9.2.4;2.2.4 Advanced DOAS Concepts;114
1.9.3;2.3 Interpretation of the Observations Using Radiative Transfer Modelling;117
1.9.3.1;2.3.1 Relevant Interaction Processes Between Radiation and Matter;117
1.9.3.1.1;a Molecular Scattering;117
1.9.3.1.2;b Particle Scattering;119
1.9.3.1.3;c Reflection and Absorption at the Surface;120
1.9.3.1.4;d Interactions at the Ocean Surface;120
1.9.3.1.5;e Molecular Absorption Processes ;121
1.9.3.2;2.3.2 Quantities Used for the Characterisation of the Measurement Sensitivity;122
1.9.3.2.1;a The Total AMF;122
1.9.3.2.2;b Box-AMF and Weighting Functions;123
1.9.3.2.3;c Averaging Kernels;126
1.9.3.2.4;d 2-D and 3-D Box-AMF;128
1.9.3.3;2.3.3 Important Input Data ;129
1.9.3.4;2.3.4 Overview of Existing Radiative Transfer Models;130
1.9.4;2.4 Separation of Tropospheric and Stratospheric Signals;132
1.9.4.1;2.4.1 Stratospheric Measurement Methods;133
1.9.4.2;2.4.2 Residual Methods;134
1.9.4.3;2.4.3 Model Method;134
1.9.4.4;2.4.4 Cloud Slicing method;135
1.9.4.5;2.4.5 Other Possible Approaches;135
1.9.5;2.5 Uncertainties in UV/vis/NIR Satellite Measurements;136
1.9.5.1;2.5.1 Instrument Noise and Stray Light;137
1.9.5.2;2.5.2 Spectroscopic Uncertainties and Instrument Slit Width;138
1.9.5.3;2.5.3 Spectral Interference;138
1.9.5.4;2.5.4 Light Path Uncertainties;139
1.9.5.5;2.5.5 Uncertainty of Separation Between Stratosphere and Troposphere;140
1.9.6;2.6 Synopsis of the Historic, and Existing, Instruments and Data Products;141
1.9.7;2.7 Example of the Retrieval Process;142
1.9.8;2.8 Future Developments;144
1.9.8.1;2.8.1 Technical Design;144
1.9.8.2;2.8.2 Data Analysis;146
1.9.8.3;2.8.3 Synergistic Use of Complementary Satellite Observations;146
1.9.9;References;147
1.10;Chapter 3: Using Thermal Infrared Absorption and Emission to Determine Trace Gases;153
1.10.1;3.1 Physical Principles;153
1.10.2;3.2 Thermal Infrared Instruments: Techniques, History, Specificity;157
1.10.2.1;3.2.1 Techniques;157
1.10.2.1.1;a Cell Correlation Radiometry;157
1.10.2.1.2;b Fourier Transform Spectroscopy;157
1.10.2.1.3;c Grating Spectrometry;158
1.10.2.2;3.2.2 History ;158
1.10.2.3;3.2.3 Specificity;159
1.10.2.3.1;a Retrieval Algorithms/Inversions;160
1.10.2.3.2;b Forward Radiative Transfer;160
1.10.2.3.3;c The Optimal Estimation (OE) Formalism;161
1.10.2.3.3.1;i Finding an Optimal Solution;161
1.10.2.3.3.2;ii Information Content;161
1.10.2.3.3.3;iii Error Budget;162
1.10.2.3.4;d The Tikhonov-Philips Regularization;163
1.10.2.3.5;e Neural Networks;163
1.10.3;3.3 Thermal Infrared: Missions and Products ;165
1.10.4;3.4 Examples;165
1.10.4.1;3.4.1 Limb and Solar Occultation Instruments;165
1.10.4.1.1;a ACE-FTS;165
1.10.4.1.2;b MIPAS;168
1.10.4.1.3;c HIRDLS;170
1.10.4.2;3.4.2 Nadir Looking Instruments;171
1.10.4.2.1;a IMG;171
1.10.4.2.2;b MOPITT;171
1.10.4.2.3;c AIRS;172
1.10.4.2.4;d TES;173
1.10.4.2.5;e IASI;174
1.10.5;3.5 Future Plans for Tropospheric Sounders ;175
1.10.6;References;177
1.11;Chapter 4: Microwave Absorption, Emission and Scattering: Trace Gases and Meteorological Parameters;182
1.11.1;4.1 Introduction;182
1.11.2;4.2 Atmospheric Remote Sensing in the Microwave range;183
1.11.2.1;4.2.1 Vector and Scalar Radiative Transfer;183
1.11.2.2;4.2.2 Gas Absorption in the Microwave Region;185
1.11.2.3;4.2.3 Particle Extinction in the Microwave Region;186
1.11.2.4;4.2.4 Simulation Software;187
1.11.2.5;4.2.5 The Inverse Problem;189
1.11.2.6;4.2.6 Observing Technique;191
1.11.3;4.3 Temperature and Water Vapour Profiles;193
1.11.3.1;4.3.1 Introduction;193
1.11.3.2;4.3.2 Examples;195
1.11.4;4.4 Remote Sensing of Clouds and precipitation ;196
1.11.4.1;4.4.1 Introduction;196
1.11.4.2;4.4.2 Retrieval of Cloud Liquid Water;199
1.11.4.3;4.4.3 Retrieval of Cloud Ice Water;201
1.11.4.4;4.4.4 Precipitation;203
1.11.5;4.5 Applications of Microwave Data in Operational Meteorology ;206
1.11.5.1;4.5.1 Data Assimilation;206
1.11.5.2;4.5.2 Microwave Data in Operational Meteorology;206
1.11.5.3;4.5.3 Microwave Radiative Transfer Modelling in Data Assimilation;208
1.11.5.4;4.5.4 Impact of Remote Sensing Data on NWP;210
1.11.5.5;4.5.5 Conclusions;213
1.11.6;4.6 Microwave Limb Sounding of the Troposphere;215
1.11.6.1;4.6.1 Background to Microwave Limb Sounding of the Troposphere;215
1.11.6.2;4.6.2 Previous, Existing and Planned Microwave Limb Sounding Instruments;216
1.11.6.3;4.6.3 Applications of Microwave Limb Sounding of the Troposphere;217
1.11.6.4;4.6.4 Upper Tropospheric Composition and Chemistry;220
1.11.6.5;4.6.5 Conclusions;222
1.11.7;4.7 Active Techniques;224
1.11.7.1;4.7.1 Introduction;224
1.11.7.2;4.7.2 The CloudSat Radar;225
1.11.7.3;4.7.3 The CloudSat Mission;225
1.11.7.4;4.7.4 The Cloud Profiling Radar;226
1.11.7.5;4.7.5 The Tropical Rainfall Measurement Mission;227
1.11.7.6;4.7.6 Results from TRMM;229
1.11.7.7;4.7.7 Conclusions;232
1.11.8;4.8 Measuring Atmospheric Parameters Using the Global Positioning System;233
1.11.8.1;4.8.1 GPS Radio Occultation;233
1.11.8.2;4.8.2 Data Availability and Impact;234
1.11.8.3;4.8.3 Ground-Based GPS Observations;236
1.11.8.4;4.8.4 Impact Studies;239
1.11.9;4.9 Outlook ;240
1.11.10;4.10 Tables of Microwave Sensors;242
1.11.11;References;244
1.12;Chapter 5: Remote Sensing of Terrestrial Clouds from Space using Backscattering and Thermal Emission Techniques;260
1.12.1;5.1 Introduction;260
1.12.2;5.2 Cloud Parameters and Their Retrievals;261
1.12.2.1;5.2.1 Cloud Cover;262
1.12.2.2;5.2.2 Cloud Phase;264
1.12.2.3;5.2.3 Cloud Optical Thickness;266
1.12.2.4;5.2.4 Effective Radius;268
1.12.2.5;5.2.5 Cloud Liquid Water and Ice Path;272
1.12.2.6;5.2.6 Cloud Top Height;273
1.12.3;5.3 Validation of Satellite Cloud Products;276
1.12.4;5.4 Modern Trends in Optical Cloud Remote Sensing from Space ;278
1.12.4.1;5.4.1 Hyperspectral Remote Sensing;278
1.12.4.2;5.4.2 Lidar Remote Sensing;280
1.12.4.3;5.4.3 Future Missions;281
1.12.5;5.5 Conclusions;283
1.12.6;References;283
1.13;Chapter 6: Retrieval of Aerosol Properties;287
1.13.1;6.1 Introduction;287
1.13.2;6.2 Aerosol Retrieval Algorithms;292
1.13.3;6.3 Aerosol Optical Parameters;294
1.13.4;6.4 Databases for Aerosol Properties;297
1.13.5;6.5 Instruments Used for the Retrieval of Aerosol Properties from Space;298
1.13.6;6.6 Retrieval of Aerosol and Cloud Parameters from CALIPSO Observations;299
1.13.6.1;6.6.1 The CALIPSO Science Payload ;300
1.13.6.2;6.6.2 CALIOP Data Calibration;301
1.13.6.3;6.6.3 Description of Available Data Products from CALIOP;302
1.13.6.4;6.6.4 CALIOP Retrieval Procedure for the Extinction Coefficient;303
1.13.7;6.7 Aerosol Remote Sensing from POLDER;304
1.13.7.1;6.7.1 POLDER Remote Sensing of Aerosols Over Ocean Surfaces;305
1.13.7.2;6.7.2 POLDER Remote Sensing of Aerosols Over Land Surfaces;306
1.13.8;6.8 Retrieval of Aerosol Properties Using AATSR;307
1.13.8.1;6.8.1 AATSR Characteristics;308
1.13.8.2;6.8.2 AATSR Retrieval Algorithm;308
1.13.8.3;6.8.3 AATSR Products;309
1.13.9;6.9 Aerosol Remote Sensing from Aqua/MODIS;311
1.13.9.1;6.9.1 MODIS Remote Sensing of Aerosols Over Ocean Surfaces;311
1.13.9.2;6.9.2 MODIS Remote Sensing of Aerosols Over Land ;312
1.13.10;6.10 Aerosol Properties from OMI;312
1.13.10.1;6.10.1 Properties from OMI Using the Multi-Wavelength Algorithm;315
1.13.10.2;6.10.2 Status of the OMAERO Product ;316
1.13.11;6.11 Retrieval of Aerosol Properties Using MERIS ;317
1.13.12;6.12 Validation;320
1.13.13;6.13 Air Quality: Using AOD to Monitor PM2.5 in the Netherlands;320
1.13.13.1;6.13.1 Establishing an AOD-PM2.5 Relationship;322
1.13.13.2;6.13.2 Application of the AOD-PM2.5 Relationship to MODIS Data;324
1.13.14;6.14 Application to Climate: Aerosol Direct Radiative Forcing;325
1.13.14.1;6.14.1 Uncertainties in Aerosol Direct Radiative Forcing;327
1.13.14.2;6.14.2 Comparisons of Aerosol Radiative Forcing with Models;328
1.13.14.3;6.14.3 Aerosol Radiative Forcing: Conclusions;329
1.13.15;6.15 Use of Satellites for Aerosol-Cloud Interaction Studies;329
1.13.15.1;a SEVIRI;330
1.13.15.2;b PARASOL;330
1.13.15.3;c MODIS;330
1.13.15.4;d OMI;331
1.13.15.5;e CALIPSO;331
1.13.16;6.16 Intercomparison of Aerosol Retrieval Products;331
1.13.17;6.17 Conclusions;332
1.13.18;References;334
1.14;Chapter 7: Data Quality and Validation of Satellite Measurements of Tropospheric Composition;342
1.14.1;7.1 Introduction;342
1.14.2;7.2 Methods of Validation;346
1.14.2.1;7.2.1 Definitions;346
1.14.2.2;7.2.2 Comparing Data Sets;347
1.14.2.2.1;a Finding Collocated Data;347
1.14.2.2.2;b Selection and Filtering;348
1.14.2.2.3;c Data Treatment;349
1.14.2.2.3.1;Vertical Representation;349
1.14.2.2.3.2;Time Differences;350
1.14.2.2.3.3;Horizontal Representation;350
1.14.2.2.3.4;Noise Reduction;352
1.14.2.2.4;d Analysing the Data;352
1.14.2.3;7.2.3 Use of Models ;355
1.14.2.4;7.2.4 Data Variability;356
1.14.3;7.3 Quality Assurance;357
1.14.3.1;7.3.1 Validation and Mission Planning;358
1.14.3.2;7.3.2 Calibration;358
1.14.3.2.1;a Viewing Geometry;358
1.14.3.2.2;b Wavelength;359
1.14.3.2.3;c Absolute Radiance;359
1.14.3.3;7.3.3 Lower-Level Data Products;359
1.14.3.4;7.3.4 Retrieval Algorithm Optimisation;360
1.14.3.5;7.3.5 Instrument Degradation ;360
1.14.3.6;7.3.6 Overall Quality Monitoring ;361
1.14.4;7.4 Validation Characteristics of Tropospheric Products;362
1.14.4.1;7.4.1 Tropospheric Processes Impacting on Trace Gas Distributions;363
1.14.4.2;7.4.2 Validation Needs for Trace Gases with Stratospheric Contributions;365
1.14.4.2.1;a What Causes Stratospheric Variability?;365
1.14.4.2.2;b What Determines the Vertical Distribution of these Species?;367
1.14.4.3;7.4.3 Validation Needs Related to Cloud, Albedo and Aerosol Effects;368
1.14.4.4;7.4.4 Validation Needs for Aerosols;370
1.14.5;7.5 The Use of Correlative Measurements for Validation;371
1.14.5.1;7.5.1 In Situ Measurements;371
1.14.5.1.1;a In Situ Measurements for O3 and CO;373
1.14.5.1.2;b In Situ Measurement Techniques for NO2;375
1.14.5.1.3;c Factors Impacting on the Use of In Situ Measurements for Satellite NO2 Data Validation;376
1.14.5.2;7.5.2 Remote Sensing;376
1.14.5.2.1;a Multi-Axis Differential Optical Absorption Spectroscopy (MAXDOAS) ;377
1.14.5.2.2;b Fourier Transform Infrared Spectroscopy (FTIR) ;379
1.14.5.2.3;c Light Detection and Ranging (lidar) ;379
1.14.5.2.4;d Sun Photometers;380
1.14.5.3;7.5.3 Networks and Data Centres ;380
1.14.5.4;7.5.4 Validation Activities;381
1.14.6;7.6 Future Validation strategies;381
1.14.6.1;7.6.1 Requirements for Future Validation Measurements;381
1.14.6.2;7.6.2 Validation Strategy for Tropospheric O3;382
1.14.6.3;7.6.3 Validation Strategy for Tropospheric NO2;382
1.14.6.4;7.6.4 Validation Strategy for CO;384
1.14.7;References;384
1.15;Chapter 8: Applications of Satellite Observations of Tropospheric Composition ;392
1.15.1;8.1 Introduction;392
1.15.2;8.2 Overview of the Tropospheric Chemical Species Measured from Space;393
1.15.2.1;8.2.1 Tropospheric Ozone, O3;393
1.15.2.2;8.2.2 Nitrogen Dioxide, NO2;395
1.15.2.3;8.2.3 Carbon Monoxide, CO;398
1.15.2.3.1;a General Transport Phenomena;400
1.15.2.3.2;b Hemispheric Transport of Air Pollution;401
1.15.2.3.3;c Emission Estimates;402
1.15.2.3.4;d Fires (Biomass Burning);403
1.15.2.3.5;e Model Performance;404
1.15.2.4;8.2.4 Formaldehyde, HCHO;405
1.15.2.5;8.2.5 Glyoxal, CHOCHO;406
1.15.2.6;8.2.6 Sulfur Dioxide, SO2;407
1.15.2.7;8.2.7 Ammonia, NH3;409
1.15.2.8;8.2.8 Carbon Dioxide, CO2;409
1.15.2.9;8.2.9 Methane, CH4;411
1.15.2.10;8.2.10 Water, H2O;412
1.15.2.11;8.2.11 Bromine Monoxide, BrO;413
1.15.2.12;8.2.12 Iodine Monoxide, IO;415
1.15.2.13;8.2.13 Methanol, CH3OH;416
1.15.2.14;8.2.14 Nitrous Oxide, N2O;417
1.15.2.15;8.2.15 Nitric Acid, HNO3;418
1.15.2.16;8.2.16 Other Trace Species;418
1.15.3;8.3 Satellite Observations of Tropospheric Composition: What Can We Learn?;426
1.15.3.1;8.3.1 Column Density Maps as Proxies for Emissions ;426
1.15.3.2;8.3.2 Monitoring Transport and Circulation;431
1.15.3.3;8.3.3 Trends;434
1.15.3.4;8.3.4 Periodical Temporal Patterns;437
1.15.3.5;8.3.5 Synergistic Use of Different Measurements;438
1.15.3.5.1;a Improving Retrievals;439
1.15.3.5.2;b Identifying Sources;439
1.15.3.5.3;c Learning About Atmospheric Chemistry;440
1.15.3.5.4;d Learning About Profiles;440
1.15.3.5.5;e Multi-Platform Observations;441
1.15.3.6;8.3.6 Operational Use;443
1.15.4;8.4 Summary and Outlook;444
1.15.5;References;445
1.16;Chapter 9: Synergistic Use of Retrieved Trace Constituent Distributions and Numerical Modelling;477
1.16.1;9.1 Introduction ;477
1.16.2;9.2 Use of Satellite Data for Process Understanding and Model Evaluation;480
1.16.2.1;9.2.1 Understanding Atmospheric Chemistry ;481
1.16.2.1.1;a Formaldehyde, HCHO: A Proxy for VOC Emissions ;482
1.16.2.1.2;b Glyoxal, CHOCHO: Source Apportionment ;483
1.16.2.1.3;c Determining Dominant Chemical Pathways: Air Pollution Impact;485
1.16.2.1.4;d Understanding Differences Between Retrievals and Model Results;486
1.16.2.2;9.2.2 Model Evaluations - Comparison with Observation;487
1.16.2.2.1;a NO2;488
1.16.2.2.2;b CO;490
1.16.2.2.3;c Aerosol;492
1.16.3;9.3 Inverse Modelling;493
1.16.3.1;9.3.1 Inversions for Short-Lived Species;493
1.16.3.2;9.3.2 Inversions for CO and CH4 ;497
1.16.3.3;9.3.3 Need for Future Developments;498
1.16.4;9.4 Data Assimilation;499
1.16.4.1;9.4.1 Objectives and State of the Art Approaches;499
1.16.4.2;9.4.2 Example Results for Tropospheric O3 assimilation;501
1.16.4.3;9.4.3 Example Results for NO2 Tropospheric Column Assimilation;502
1.16.4.4;9.4.4 Aerosol Satellite Data Assimilation;504
1.16.5;9.5 Summary: Perspectives;507
1.16.6;9.6 Appendix;508
1.16.7;Inverse Modelling: Principles;508
1.16.8;References;511
1.17;Chapter 10: Conclusions and Perspectives;519
1.17.1;10.1 Introduction: The Need for Satellite Observations;519
1.17.2;10.2 Some Scientific Highlights;521
1.17.2.1;10.2.1 Observed Compounds;521
1.17.2.2;10.2.2 The Multiple Roles of NO2;522
1.17.2.3;10.2.3 Industrial Emissions and Biomass Burning;522
1.17.2.4;10.2.4 Ozone, O3;523
1.17.2.5;10.2.5 Greenhouse Gases;523
1.17.2.6;10.2.6 Water Vapour, and Other Hydrological and Cloud Parameters;524
1.17.2.7;10.2.7 Aerosol and Cloud Parameters;524
1.17.2.8;10.2.8 Volcanic Emissions;526
1.17.3;10.3 Scientific Needs;526
1.17.4;10.4 Further Interpretation of Data from Current Instrumentation;528
1.17.4.1;10.4.1 Retrieval Algorithm Developments;528
1.17.4.2;10.4.2 The Use of Multiple Observations;529
1.17.4.3;10.4.3 Data Assimilation;529
1.17.5;10.5 Idealised Requirements for the Evolution of Instrumentation;530
1.17.6;10.6 Perspectives for the Improvement of Instrument Technology;531
1.17.6.1;10.6.1 Polarisation Measurements;531
1.17.6.2;10.6.2 Measurements for Tomographic Reconstruction;532
1.17.6.3;10.6.3 Multi-Wavelength Hyper-Spectral Measurements;532
1.17.6.4;10.6.4 Multi-Instrument Measurements ;532
1.17.6.5;10.6.5 Microwave and Sub-mm Spectral Region;532
1.17.6.6;10.6.6 Active Systems;532
1.17.7;10.7 Current and Future Planned Missions;533
1.17.7.1;10.7.1 LEO Satellite Instruments;533
1.17.7.2;10.7.2 GEO Satellite Instruments;534
1.17.7.3;10.7.3 Greenhouse Gases;535
1.17.7.4;10.7.4 Observations from the Lagrange Point;536
1.17.8;10.8 Future Monitoring of the Troposphere from Space;536
1.17.9;10.9 Conclusions;538
1.17.10;References;539
1.18;Appendices;541
1.18.1;Appendix A: Satellite Instruments for the Remote Sensing in the UV, Visible and IR;541
1.18.1.1;Abbreviations Used in the Table;541
1.18.2;Appendix B: Atlas of Ancillary Global Data;548
1.18.3;Appendix C: Abbreviations and Acronyms;550
1.18.4;Appendix D: Timelines for Present and Future Missions;558
1.18.4.1;D.1Tropospheric Reactive Gases;558
1.18.4.2;D.2Greenhouse Gases: CH4, CO2;560
1.18.4.3;D.3Greenhouse Gases: Water Vapour;561
1.18.4.4;D.4Tropospheric Aerosol;562
1.18.4.5;D.5Clouds;563
1.19;Index;565
Tropospheric Remote Sensing From Space.- Solar Backscattered Radiation: UV, Visible and near IR-Trace Gases.- Thermal Infrared: Absorption and Emission - Trace Gases and Parameters.- Microwave: Absorption and Emission - Trace Gases and Metereological Parameters.- Remote Sensing of Terrestrial Clouds from Space using Backscattering and Thermal Emission Techniques.- Retrieval of Aerosol Properties.- Data Quality and Validation of Satellite Measurements of Tropospheric Composition.- Applications: Satellite Observations of Tropospheric Compostion.- Applications - Data and Models: Synergetic Use of Satellite Retrieved Trophospheric Trace Constituent Distributions and Numerical Modelling.- Conclusions and Perspectives.- Appendices.