Buch, Englisch, Band 125, 230 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 371 g
Buch, Englisch, Band 125, 230 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 371 g
Reihe: Studies in Computational Intelligence
ISBN: 978-3-642-09775-1
Verlag: Springer
Just over thirty years after Holland first presented the outline for Learning Classifier System paradigm, the ability of LCS to solve complex real-world problems is becoming clear. In particular, their capability for rule induction in data mining has sparked renewed interest in LCS. This book brings together work by a number of individuals who are demonstrating their good performance in a variety of domains.
The first contribution is arranged as follows: Firstly, the main forms of LCS are described in some detail. A number of historical uses of LCS in data mining are then reviewed before an overview of the rest of the volume is presented. The rest of this book describes recent research on the use of LCS in the main areas of machine learning data mining: classification, clustering, time-series and numerical prediction, feature selection, ensembles, and knowledge discovery.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Robotik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Wissensbasierte Systeme, Expertensysteme
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Mathematik | Informatik Mathematik Mathematische Analysis Moderne Anwendungen der Analysis
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Mathematik | Informatik EDV | Informatik Professionelle Anwendung Computer-Aided Design (CAD)
Weitere Infos & Material
Learning Classifier Systems in Data Mining: An Introduction.- Data Mining in Proteomics with Learning Classifier Systems.- Improving Evolutionary Computation Based Data-Mining for the Process Industry: The Importance of Abstraction.- Distributed Learning Classifier Systems.- Knowledge Discovery from Medical Data: An Empirical Study with XCS.- Mining Imbalanced Data with Learning Classifier Systems.- XCS for Fusing Multi-Spectral Data in Automatic Target Recognition.- Foreign Exchange Trading Using a Learning Classifier System.- Towards Clustering with Learning Classifier Systems.- A Comparative Study of Several Genetic-Based Supervised Learning Systems.