Bucur / Buttazzo | Variational Methods in Shape Optimization Problems | E-Book | sack.de
E-Book

E-Book, Englisch, Band 65, 217 Seiten, eBook

Reihe: Progress in Nonlinear Differential Equations and Their Applications

Bucur / Buttazzo Variational Methods in Shape Optimization Problems


2005
ISBN: 978-0-8176-4403-1
Verlag: Birkhäuser Boston
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 65, 217 Seiten, eBook

Reihe: Progress in Nonlinear Differential Equations and Their Applications

ISBN: 978-0-8176-4403-1
Verlag: Birkhäuser Boston
Format: PDF
Kopierschutz: 1 - PDF Watermark



Shape optimization problems are treated from the classical and modern perspectives

Targets a broad audience of graduate students in pure and applied mathematics, as well as engineers requiring a solid mathematical basis for the solution of practical problems

Requires only a standard knowledge in the calculus of variations, differential equations, and functional analysis

Driven by several good examples and illustrations

Poses some open questions.

Bucur / Buttazzo Variational Methods in Shape Optimization Problems jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


* Preface
* Introduction to Shape Optimization Theory and Some Classical Problems
> General formulation of a shape optimization problem
> The isoperimetric problem and some of its variants
> The Newton problem of minimal aerodynamical resistance
> Optimal interfaces between two media
> The optimal shape of a thin insulating layer
* Optimization Problems Over Classes of Convex Domains
> A general existence result for variational integrals
> Some necessary conditions of optimality
> Optimization for boundary integrals
> Problems governed by PDE of higher order
* Optimal Control Problems: A General Scheme
> A topological framework for general optimization problems
> A quick survey on 'gamma'-convergence theory
> The topology of 'gamma'-convergence for control variables
> A general definition of relaxed controls
> Optimal control problems governed by ODE
> Examples of relaxed shape optimization problems
* Shape Optimization Problems with Dirichlet Condition on the Free Boundary
> A short survey on capacities
> Nonexistence of optimal solutions

> The relaxed form of a Dirichlet problem
> Necessary conditions of optimality
> Boundary variation
> Continuity under geometric constraints
> Continuity under topological constraints: Šverák’s result
> Nonlinear operators: necessary and sufficient conditions for the 'gamma'-convergence
> Stability in the sense of Keldysh
> Further remarks and generalizations
* Existence of Classical Solutions
> Existence of optimal domains under geometrical constraints
> A general abstract result for monotone costs
> The weak'gamma'-convergence for quasi-open domains
> Examples of monotone costs
> The problem of optimal partitions
> Optimal obstacles
* Optimization Problems for Functions of Eigenvalues
> Stability of eigenvalues under geometric domain perturbation
> Setting the optimization problem
> A short survey on continuous Steiner symmetrization
> The case of the first two eigenvalues of the Laplace operator
> Unbounded design regions
> Some open questions
* Shape Optimization Problems with Neumann Condition on the Free Boundary
> Some examples
> Boundary variation for Neumann problems
> General facts in RN
> Topological constraints for shape stability
> The optimal cutting problem
> Eigenvalues of the Neumann Laplacian
* Bibliography
* Index



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.