E-Book, Englisch, Band 20, 318 Seiten
Buchmann / Vollmer Binary Quadratic Forms
1. Auflage 2007
ISBN: 978-3-540-46368-9
Verlag: Springer Berlin Heidelberg
Format: PDF
Kopierschutz: 1 - PDF Watermark
An Algorithmic Approach
E-Book, Englisch, Band 20, 318 Seiten
Reihe: Algorithms and Computation in Mathematics
ISBN: 978-3-540-46368-9
Verlag: Springer Berlin Heidelberg
Format: PDF
Kopierschutz: 1 - PDF Watermark
Autoren/Hrsg.
Weitere Infos & Material
1;Contents;5
2;List of Figures;11
3;List of Algorithms;12
4;Introduction;14
4.1;Content;16
4.2;Acknowledgments;19
4.3;Chapter references and further reading;19
5;1 Binary Quadratic Forms;21
5.1;1.1 Computational problems;21
5.2;1.2 Discriminant;24
5.3;1.3 Reducible forms with integer coefficients;27
5.4;1.4 Applications;29
5.5;1.5 Exercises;32
5.6;Chapter references and further reading;32
6;2 Equivalence of Forms;33
6.1;2.1 Transformation of forms;33
6.2;2.2 Equivalence;34
6.3;2.3 Invariants of equivalence classes of forms;35
6.4;2.4 Two special transformations;36
6.5;2.5 Automorphisms of forms;38
6.6;2.6 A strategy for finding proper representations;42
6.7;2.7 Determining improper representations;44
6.8;2.8 Ambiguous classes;44
6.9;2.9 Exercises;45
7;3 Constructing Forms;47
7.1;3.1 Reduction to finding square roots of . modulo 4a;47
7.2;3.2 The case a < 0;48
7.3;3.3 Fundamental discriminants and conductor;49
7.4;3.4 The case of a prime number;50
7.5;3.5 The case of a prime power;61
7.6;3.6 The case of a composite integer;65
7.7;3.7 Exercises;66
7.8;Chapter references and further reading;68
8;4 Forms, Bases, Points, and Lattices;69
8.1;4.1 Two-dimensional commutative R-algebras;69
8.2;4.2 Irrational forms, bases, points and lattices;79
8.3;4.3 Bases, points, and forms;81
8.4;4.4 Lattices and forms;87
8.5;4.5 Quadratic irrationalities and forms;91
8.6;4.6 Quadratic lattices and forms;94
8.7;4.7 Exercises;95
9;5 Reduction of Positive Definite Forms;97
9.1;5.1 Negative definite forms;97
9.2;5.2 Normal forms;98
9.3;5.3 Reduced forms and the reduction algorithm;99
9.4;5.4 Properties of reduced forms;102
9.5;5.5 The number of reduction steps;103
9.6;5.6 Bit complexity of the reduction algorithm;104
9.7;5.7 Uniqueness of reduced forms;106
9.8;5.8 Deciding equivalence;108
9.9;5.9 Solving the representation problem;109
9.10;5.10 Solving the minimum problem;110
9.11;5.11 Class number;110
9.12;5.12 Reduction of semidefinite forms;113
9.13;5.13 Geometry of reduction;114
9.14;5.14 The densest two-dimensional lattice packing;115
9.15;5.15 Exercises;116
9.16;Chapter references and further reading;117
10;6 Reduction of Indefinite Forms;118
10.1;6.1 Normal forms;118
10.2;6.2 Reduced forms;120
10.3;6.3 Another characterization of reduced forms;121
10.4;6.4 The reduction algorithm;123
10.5;6.5 The number of reduction steps;124
10.6;6.6 Complexity of reducing integral forms;126
10.7;6.7 Enumerating integral reduced forms of a given discriminant;129
10.8;6.8 Reduced forms in an equivalence class;131
10.9;6.9 Enumeration of the reduced forms in an equivalence class;137
10.10;6.10 Cycles of reduced forms;138
10.11;6.11 Deciding equivalence;142
10.12;6.12 The automorphism group;143
10.13;6.13 Complexity;145
10.14;6.14 Ambiguous cycles;147
10.15;6.15 Solution of the representation problem;149
10.16;6.16 Solving the minimum problem;150
10.17;6.17 Class number;151
10.18;6.18 Exercises;152
10.19;Chapter references and further reading;153
11;7 Multiplicative Lattices;154
11.1;7.1 Lattice operations;154
11.2;7.2 Quadratic orders;155
11.3;7.3 Multiplicative lattices;158
11.4;7.4 Composition of forms;164
11.5;7.5 Exercises;167
11.6;Chapter references and further reading;167
12;8 Quadratic Number Fields;168
12.1;8.1 Basics;168
12.2;8.2 Algebraic integers;170
12.3;8.3 Units of orders;171
12.4;8.4 Ideals of orders;174
12.5;8.5 Factorization of ideals;179
12.6;8.6 Unique factorization into prime ideals;182
12.7;8.7 Exercises;187
13;9 Class Groups;188
13.1;9.1 Ideal classes;188
13.2;9.2 Ambiguous ideals and classes;193
13.3;9.3 Fundamentals on class groups;195
13.4;9.4 Computing in finite Abelian groups;203
13.5;9.5 Generating systems;206
13.6;9.6 Computing a generating system in time |.|1/2+o(1);207
13.7;9.7 Computing the structure of a finite Abelian group;212
13.8;9.8 Exercises;225
13.9;Chapter references and further reading;226
14;10 Infrastructure;228
14.1;10.1 Geometry of reduction;228
14.2;10.2 A Terr algorithm;233
14.3;10.3 Further applications;241
14.4;10.4 Exercises;242
14.5;Chapter references and further reading;243
15;11 Subexponential Algorithms;244
15.1;11.1 The function Lx[ a, b];244
15.2;11.2 Preliminaries;245
15.3;11.3 The factor base;246
15.4;11.4 The imaginary quadratic case;248
15.5;11.5 The real quadratic case;259
15.6;11.6 Practice;278
15.7;11.7 Exercises;279
15.8;Chapter references and further reading;280
16;12 Cryptographic Applications;283
16.1;12.1 Problems;284
16.2;12.2 Cryptographic algorithms in imaginary-quadratic orders;287
16.3;12.3 Cryptographic algorithms in real-quadratic orders;290
16.4;12.4 Open Problems;292
16.5;12.5 Exercises;293
16.6;Chapter references and further reading;293
17;A Appendix;298
17.1;A.1 Vectors and matrices;298
17.2;A.2 Action of groups on sets;299
17.3;A.3 The lemma of Gauss;299
17.4;A.4 Lattices;300
17.5;A.5 Linear algebra over;302
17.6;A.6 Exercises;312
17.7;Chapter references and further reading;312
18;Bibliography;314
18.1;Books;314
18.2;Surveys;314
18.3;Other Referenced Works;315
19;Index;324




