E-Book, Englisch, 293 Seiten, eBook
Brzezinski / Brzezinski Galois Theory Through Exercises
1. Auflage 2018
ISBN: 978-3-319-72326-6
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 293 Seiten, eBook
Reihe: Springer Undergraduate Mathematics Series
ISBN: 978-3-319-72326-6
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
In addition to covering standard material, the book explores topics related to classical problems such as Galois’ theorem on solvable groups of polynomial equations of prime degrees, Nagell's proof of non-solvability by radicals of quintic equations, Tschirnhausen's transformations, lunes of Hippocrates, and Galois' resolvents. Topics related to open conjectures are also discussed, including exercises related to the inverse Galois problem and cyclotomic fields. The author presents proofs of theorems, historical comments and useful references alongside the exercises, providing readers with a well-rounded introduction to the subject and a gateway to further reading.
A valuable reference and a rich source of exercises with sample solutions, this book will be useful to both students and lecturers. Its original concept makes it particularly suitable for self-study.
Zielgruppe
Upper undergraduate
Autoren/Hrsg.
Weitere Infos & Material
1 Solving algebraic equations.- 2 Field extensions.- 3 Polynomials and irreducibility.- 4 Algebraic extensions.- 5 Splitting fields.- 6 Automorphism groups of fields.- 7 Normal extensions.- 8 Separable extensions.- 9 Galois extensions.- 10 Cyclotomic extensions.- 11 Galois modules.- 12 Solvable groups.- 13 Solvability of equations.- 14 Geometric constructions.- 15 Computing Galois groups.- 16 Supplementary problems.- 17 Proofs of the theorems.- 18 Hints and answers.- 19 Examples and selected solutions.- Appendix: Groups, rings and fields.- References.- List of notations.- Index.




