Broclawik / Borowski / Radon | Transition Metals in Coordination Environments | E-Book | www2.sack.de
E-Book

E-Book, Englisch, Band 29, 540 Seiten

Reihe: Challenges and Advances in Computational Chemistry and Physics

Broclawik / Borowski / Radon Transition Metals in Coordination Environments

Computational Chemistry and Catalysis Viewpoints
1. Auflage 2019
ISBN: 978-3-030-11714-6
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

Computational Chemistry and Catalysis Viewpoints

E-Book, Englisch, Band 29, 540 Seiten

Reihe: Challenges and Advances in Computational Chemistry and Physics

ISBN: 978-3-030-11714-6
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book focuses on the electronic properties of transition metals in coordination environments. These properties are responsible for the unique and intricate activity of transition metal sites in bio- and inorganic catalysis, but also pose challenges for both theoretical and experimental studies. Written by an international group of recognized experts, the book reviews recent advances in computational modeling and discusses their interplay using experiments. It covers a broad range of topics, including advanced computational methods for transition metal systems; spectroscopic, electrochemical and catalytic properties of transition metals in coordination environments; metalloenzymes and biomimetic compounds; and spin-related phenomena. As such, the book offers an invaluable resource for all researchers and postgraduate students interested in both fundamental and application-oriented research in the field of transition metal systems. 

Ewa Broclawik is a Professor Emeritus and former Full Professor at the Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences in Krakow, Poland. Her research interests focus on theoretical and applied quantum chemistry, in particular on the modeling of active sites in heterogeneous and enzymatic catalysis and on catalytic reaction mechanisms. Dr. Broclawik is the author of more than 180 publications, including 9 book chapters.   Tomasz Borowski is a Full Professor at the Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences. His research interests encompass computational chemistry, biochemistry, reaction mechanisms, metalloenzymes, and protein structure and dynamics. Dr. Borowski has published more than 60 research papers in refereed journals as well as 3 book chapters. Mariusz Rado? is an Assistant Professor at Jagiellonian University, Krakow, Poland. His primary research interest is in quantum chemistry, especially its applications to transition metal complexes and active sites of metalloproteins, with a focus on electronic structure, spin-state energetics, metal-ligand interactions and connections to catalytic activity. Dr. Rado? is the author of 30 publications, including 1 book chapter. 

Broclawik / Borowski / Radon Transition Metals in Coordination Environments jetzt bestellen!

Weitere Infos & Material


1;Preface;6
2;Contents;12
3;Contributors;14
4;The Electronic Determinants of Spin Crossover Described by Density Functional Theory;17
4.1;1 Introduction;17
4.2;2 Fundamentals of Spin Crossover;19
4.2.1;2.1 The Dilemma and Choice Between LS and HS;19
4.2.2;2.2 The Spectrochemical Series;21
4.2.3;2.3 The Thermochemical Spin Series;21
4.2.4;2.4 The Oxidation State on the Central Metal Ion;22
4.2.5;2.5 Homoleptic SCO Complexes and the Case of Co3+(aq);23
4.2.6;2.6 Geometry Preferences and Changes During SCO;25
4.2.7;2.7 The Nature of the SCO Transition;26
4.2.8;2.8 True Hysteresis and Intrinsic Hysteresis;27
4.3;3 Important Contributions to Single-Molecule SCO;28
4.3.1;3.1 Zero-Point Vibrational Energy;28
4.3.2;3.2 Dispersion Contributions to the Spin Crossover Equilibrium;29
4.3.3;3.3 Relativistic Stabilization of LS;30
4.3.4;3.4 Vibrational Entropy;32
4.4;4 Performance of DFT for Describing SCO;35
4.4.1;4.1 The Massive Role of HF Exchange Favoring HS;35
4.4.2;4.2 The Role of the Correlation Functional;37
4.4.3;4.3 The Use of Quantum-Chemical Benchmarks and the Post-HF Bias;38
4.4.4;4.4 Toward Spin-State-Balanced Density Functionals;39
4.5;5 Conclusions;41
4.6;References;41
5;Anisotropic Magnetic Spin Interactions of Transition Metal Complexes and Metalloenzymes from Spectroscopy and Quantum Chemistry;50
5.1;1 Introduction;50
5.2;2 Electron Spin Interactions with an External Magnetic Field;52
5.2.1;2.1 The Concept of an Effective Spin Hamiltonian;53
5.3;3 Quantum Chemical Calculations of EPR Parameters;57
5.4;4 Structural Information from the Anisotropy of Magnetic Interactions;60
5.4.1;4.1 EPR Studies on Single Crystals;60
5.4.2;4.2 Model Complexes;61
5.4.3;4.3 Transition Metal Containing Enzymes;66
5.5;5 Conclusion;74
5.6;References;75
6;Non-covalent Interactions in Selected Transition Metal Complexes;80
6.1;1 Introduction;81
6.2;2 Methods;82
6.2.1;2.1 ETS-NOCV Charge and Energy Decomposition Scheme;82
6.2.2;2.2 Non-covalent Index (NCI);83
6.2.3;2.3 Quantum Theory of Atoms in Molecules (QTAIM);83
6.2.4;2.4 Interacting Quantum Atoms (IQA) Energy Decomposition Scheme;84
6.2.5;2.5 Computational Details;84
6.3;3 Results and Discussion;85
6.4;4 Conclusions;101
6.5;References;102
7;Applications of the Density Matrix Renormalization Group to Exchange-Coupled Transition Metal Systems;105
7.1;1 Introduction;105
7.2;2 Theoretical Treatment of Exchange Coupling;107
7.3;3 The Density Matrix Renormalization Group Approach;110
7.4;4 Case Studies: Magnetic Coupling in Dinuclear Complexes;113
7.4.1;4.1 Fe2 and Cr2 Mono-?-Oxo Complexes;114
7.4.2;4.2 Mn2 Bis-?-Oxo/?-Acetato Complex;120
7.5;5 General Remarks;125
7.5.1;5.1 Active Space Composition;125
7.5.2;5.2 Orbital Optimization, State Selection and Convergence;126
7.5.3;5.3 Deviations from Heisenberg Behavior;128
7.5.4;5.4 Analysis of Exchange Coupling;129
7.6;6 Summary and Perspectives;130
7.7;References;131
8;New Strategies in Modeling Electronic Structures and Properties with Applications to Actinides;135
8.1;1 Introduction;136
8.2;2 A Brief Overview of Actinides and Their Complex Electronic Structure;136
8.3;3 Electronic Structure Methods in Quantum Chemistry;138
8.3.1;3.1 Introducing Relativistic Effects;139
8.3.2;3.2 Solving the Electronic Problem;142
8.4;4 Challenging Examples in Computational Actinide Chemistry;161
8.4.1;4.1 Symmetric Dissociation of UO22+;161
8.4.2;4.2 Excitations of NUN;162
8.4.3;4.3 CUO Diluted in Noble Gas Matrices;164
8.4.4;4.4 Cation–cation Attraction in [NpO2]22+;165
8.5;5 Summary;166
8.6;References;167
9;Computational Versus Experimental Spectroscopy for Transition Metals;175
9.1;1 Introduction;175
9.2;2 Structure of the FeMoco Cofactor of Nitrogenase in Comparison with the Oxygen-Evolving Complex of Photosystem II;176
9.3;3 Lewis-Acid Capped Iron-Oxygen and Copper-Nitrogen Species;179
9.4;4 Transient Species: The Case of Nickel(IV) Tris-?-Oxido;183
9.5;5 Magnetic Anisotropy in Transition-Metal Complexes;186
9.6;6 Concluding Remarks;192
9.7;7 Further Reading;193
9.8;References;193
10;Multiconfigurational Approach to X-ray Spectroscopy of Transition Metal Complexes;198
10.1;1 X-ray Spectroscopy for Transition Metals;199
10.2;2 Theoretical Simulations of X-ray Spectra;201
10.3;3 Multiconfigurational Approach to X-ray Processes;202
10.3.1;3.1 System Selection;203
10.3.2;3.2 Active-Space Selection;204
10.3.3;3.3 Generating Core-Hole States;205
10.3.4;3.4 Simulating Light-Matter Interaction;206
10.3.5;3.5 Number of States, Correlation Level and Basis Set;208
10.3.6;3.6 Relativistic Effects;211
10.3.7;3.7 Simulating X-ray Processes with Molcas;212
10.4;4 Electronic Structure from X-ray Spectra;213
10.4.1;4.1 Spin and Oxidation State;213
10.4.2;4.2 Molecular Orbitals in Metal–Ligand Binding;215
10.4.3;4.3 Transient Intermediates from Charge-Transfer Excitations;217
10.4.4;4.4 Multiconfigurational Description of Multiplet Splittings;218
10.4.5;4.5 Metal–Ligand Covalency from Multiplet Splittings;220
10.5;5 Extensions to Metal Dimers and Complex Systems;222
10.5.1;5.1 Intermolecular Coupling;222
10.5.2;5.2 Intramolecular Coupling;223
10.6;6 Conclusions and Outlook;224
10.7;References;225
11;Assessing Electronically Excited States of Cobalamins via Absorption Spectroscopy and Time-Dependent Density Functional Theory;231
11.1;1 Introduction;231
11.2;2 Electronic and Structural Properties of Cobalamins;234
11.3;3 Importance of Abs, CD, and MCD Spectroscopy;235
11.4;4 Transient Absorption Spectroscopy;238
11.5;5 Early Attempts to Analyze and Assign Electronically Excited States;238
11.6;6 Importance of Electronically Excited States: Relevance of DFT and TD-DFT in Electronic Structure Calculations;240
11.7;7 Co–C Bond Strength: Key to Theoretical Benchmarks;240
11.8;8 Benchmarks for Electronically Excited States;243
11.9;9 Absorption Features Across Specific Systems: Theory and Experiment;246
11.9.1;9.1 Free Base Corrin;246
11.9.2;9.2 Cyanocobalamin;250
11.9.3;9.3 Methylcobalamin;252
11.9.4;9.4 Adenosylcobalamin;256
11.9.5;9.5 Antivitamins B12;259
11.9.6;9.6 Non-alkyl Cobalamins;260
11.9.7;9.7 Reduced Cobalamins;262
11.10;10 Summary and Future Directions;264
11.11;References;266
12;Photodeactivation Channels of Transition Metal Complexes: A Computational Chemistry Perspective;271
12.1;1 General Overview;272
12.2;2 State-of-the-Art Theoretical and Computational Methods for the Study of the ES Deactivation Channels of TMCs;279
12.2.1;2.1 Quantum Chemical Methods for the ES;279
12.2.2;2.2 ES Decay Rate Theories;281
12.2.3;2.3 ES Reaction Dynamics Methods;283
12.3;3 Photodeactivation Channels of TMCs: Selected Recent Computational Works;285
12.3.1;3.1 ES Decay Rate Theory and ES Kinetic Modeling: Calculation of the Temperature-Dependent Photoluminescence Lifetimes and Efficiencies of Cyclometalated Ir(III) Complexes;285
12.3.2;3.2 ES Dynamics: TSH Dynamics Including ISC in [Ru(bpy)3]2+;288
12.3.3;3.3 Anti-Kasha Emissions in Ru(II) Complexes: Kinetic Control of Photoluminescence or Solvent Effects?;290
12.4;4 Conclusion and Perspectives;294
12.5;References;294
13;Mechanism and Kinetics in Homogeneous Catalysis: A Computational Viewpoint;300
13.1;1 Introduction;300
13.2;2 Chemical Reaction Mechanisms;301
13.3;3 Reactivity Studies in Organic and Organometallic Chemistry;303
13.3.1;3.1 Sulfur Ylide Epoxidation;304
13.3.2;3.2 Ketone Hydrogenation by Ruthenium Hydrides;308
13.3.3;3.3 Mechanism Discovery: Cis–Trans Isomerization of Alkenes;311
13.3.4;3.4 Morita–Baylis–Hillman Reaction;314
13.4;4 Conclusions;321
13.5;References;323
14;Computational Modelling of Structure and Catalytic Properties of Silica-Supported Group VI Transition Metal Oxide Species;325
14.1;1 Introduction;325
14.2;2 Surface Modelling;326
14.3;3 CrOx/SiO2 System;328
14.3.1;3.1 Structure of Surface Chromium Oxide Species—Experimental Data;328
14.3.2;3.2 Structure of Surface Chromium Species—Computational Modelling;329
14.3.3;3.3 Catalytic Activity—Computational Studies;335
14.4;4 MoOx/SiO2 System;340
14.4.1;4.1 Structure of Surface Molybdenum Oxide Species—Experimental Data;340
14.4.2;4.2 Structure of Surface Molybdenum Species—Computational Modelling;341
14.4.3;4.3 Catalytic Activity—Computational Studies;343
14.5;5 WOx/SiO2 System;345
14.6;6 Concluding Remarks;347
14.7;References;348
15;Catalytic Properties of Selected Transition Metal Oxides—Computational Studies;355
15.1;1 Introduction;355
15.2;2 Methods;356
15.2.1;2.1 The DFT and Other Quantum-Chemical Methods;356
15.2.2;2.2 The Classical Mechanics—Force Fields;358
15.2.3;2.3 Other Issues;359
15.3;3 Systems: Oxides;361
15.3.1;3.1 Reducible and Non-reducible Oxides;361
15.4;4 Conclusions;397
15.5;References;397
16;Molecular Electrochemistry of Coordination Compounds—A Correlation Between Quantum Chemical Calculations and Experiment;419
16.1;1 Introduction;420
16.2;2 DFT Modelling of Redox Potentials;420
16.2.1;2.1 Problems with Calibration Based on Comparison with Experimental Data;422
16.2.2;2.2 Absolute Potential of Fc+/Fc;424
16.2.3;2.3 Molybdenum and Tungsten Scorpionates;427
16.2.4;2.4 Effect of Second Coordination Sphere and H-Bonding Changes on Reduction Potential;429
16.2.5;2.5 Further Relevant Reports;430
16.3;3 Electrochemical Communication Across Saturated Dioxoalkylene and Oxo Bridges in Dimolybdenum Scorpionates;431
16.4;4 Electrocatalytic Reductive Dehalogenation Driven by Non-covalent Interactions—Binding and Activation in Mo/W-Alkoxide System;436
16.5;5 Concluding Remarks;442
16.6;References;444
17;The Quest for Accurate Theoretical Models of Metalloenzymes: An Aid to Experiment;449
17.1;1 Introduction;449
17.2;2 Methodology;451
17.2.1;2.1 Cluster Models;451
17.2.2;2.2 Quantum Mechanics/Molecular Mechanics (QM/MM);452
17.3;3 Developments in QM Cluster Calculations;454
17.3.1;3.1 Co-factor Free Dioxygenase Reaction Mechanism;454
17.3.2;3.2 Bioengineering of S-para-Hydroxymandalate Synthase into R-para-Hydroxymandalate Synthase;457
17.4;4 Developments in QM/MM Calculations;458
17.4.1;4.1 Explicit Solvent Effects Captured with QM/MM Models;459
17.4.2;4.2 QM/MM Techniques Are Often Essential for Replicating Minor Structural Anomalies that Lead to Large Changes in Reactivity;462
17.5;5 Conclusion;466
17.6;References;466
18;Applications of Computational Chemistry to Selected Problems of Transition-Metal Catalysis in Biological and Nonbiological Systems;473
18.1;1 Introduction;473
18.2;2 Computational Methods for Studying Catalysis in Various Systems;474
18.3;3 Studies of Transition-Metal Complexes for Homogeneous Catalysis;478
18.3.1;3.1 DFT Studies of Reaction Pathways in the Ground State;478
18.3.2;3.2 DFT Studies of Reaction Pathways in Excited States;479
18.3.3;3.3 QM/QM’ Studies of Reactions Catalyzed by Transition-Metal Catalysis Having Large Ligands;481
18.4;4 Studies of Metalloenzymes;483
18.4.1;4.1 Studies of Heme Enzymes;484
18.4.2;4.2 Studies of Nonheme Enzymes;484
18.5;5 Studies of MOFs;488
18.5.1;5.1 QM/MM Studies of MOFs;488
18.5.2;5.2 Force-Field Parameterization for MOF Simulations;490
18.6;6 Conclusions;493
18.7;References;494
19;How Metal Coordination in the Ca-, Ce-, and Eu-Containing Methanol Dehydrogenase Enzymes Can Influence the Catalysis: A Theoretical Point of View;497
19.1;1 Introduction;497
19.2;2 Computational Methods;499
19.2.1;2.1 Active Site Model;499
19.3;3 Results and Discussion;501
19.3.1;3.1 Ce-MDH PES;501
19.3.2;3.2 Michaelis–Menten Complex (ES) for Ce-MDH and Eu-MDH;503
19.4;4 Conclusions;508
19.5;References;508
20;Challenges in Modelling Metalloenzymes;512
20.1;1 Introduction;512
20.2;2 Checking the Structure Quality;514
20.3;3 Quantum Refinement;515
20.4;4 Homology Modelling;516
20.5;5 Modelling Loops;517
20.6;6 Prediction of pKa;518
20.7;7 Molecular Dynamics Simulations;522
20.8;8 Choosing MD Snapshots for QM or QM/MM Studies;524
20.9;9 QM Cluster Models for Metalloenzymes;527
20.10;10 Conclusions;531
20.11;References;531
21;Index;535



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.