Buch, Englisch, 326 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 682 g
Foundations, Algorithms, and Methods
Buch, Englisch, 326 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 682 g
ISBN: 978-1-4471-4074-0
Verlag: Springer
Optical scanning is rapidly becoming ubiquitous. From industrial laser scanners to medical CT, MR and 3D ultrasound scanners, numerous organizations now have easy access to optical acquisition devices that provide huge volumes of image data. However, the raw geometry data acquired must first be processed before it is useful.
This Guide to Computational Geometry Processing reviews the algorithms for processing geometric data, with a practical focus on important techniques not covered by traditional courses on computer vision and computer graphics. This is balanced with an introduction to the theoretical and mathematical underpinnings of each technique, enabling the reader to not only implement a given method, but also to understand the ideas behind it, its limitations and its advantages.
Topics and features: presents an overview of the underlying mathematical theory, covering vector spaces, metric space, affine spaces, differential geometry, and finite difference methods for derivatives and differential equations; reviews geometry representations, including polygonal meshes, splines, and subdivision surfaces; examines techniques for computing curvature from polygonal meshes; describes algorithms for mesh smoothing, mesh parametrization, and mesh optimization and simplification; discusses point location databases and convex hulls of point sets; investigates the reconstruction of triangle meshes from point clouds, including methods for registration of point clouds and surface reconstruction; provides additional data, example programs and a programming library at a supplementary website; includes self-study exercises throughout the text.
Graduate students will find this text a valuable, hands-on guide to developing key skills in geometry processing. The book will also serve as a useful reference for professionals wishing to improve their competency in this area.
Zielgruppe
Graduate
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Geometrie Euklidische Geometrie
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Algorithmen & Datenstrukturen
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Signalverarbeitung, Bildverarbeitung, Scanning
- Mathematik | Informatik EDV | Informatik Informatik Bildsignalverarbeitung
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Grafikprogrammierung
Weitere Infos & Material
Part I: Mathematical Preliminaries
Vector Spaces, Affine Spaces, and Metric Spaces
Differential Geometry
Finite Difference Methods for Partial Differential Equations
Part II: Computational Geometry Processing
Polygonal Meshes
Splines
Subdivision
Curvature in Triangle Meshes
Mesh Smoothing and Variational Subdivision
Parametrization of Meshes
Simplifying and Optimizing Triangle Meshes
Spatial Data Indexing and Point Location
Convex Hulls
Triangle Mesh Generation: Delaunay Triangulation
3D Surface Registration via Iterative Closest Point (ICP)
Surface Reconstruction using Radial Basis Functions
Volumetric Methods for Surface Reconstruction and Manipulation
Isosurface Polygonization




