Braüner | Hybrid Logic and its Proof-Theory | E-Book | www2.sack.de
E-Book

E-Book, Englisch, Band 37, 240 Seiten

Reihe: Applied Logic Series

Braüner Hybrid Logic and its Proof-Theory


1. Auflage 2010
ISBN: 978-94-007-0002-4
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 37, 240 Seiten

Reihe: Applied Logic Series

ISBN: 978-94-007-0002-4
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book is the first book-length treatment of hybrid logic and its proof-theory. Hybrid logic is an extension of ordinary modal logic which allows explicit reference to individual points in a model. The extra expressive power is useful for many applications, for example, when reasoning about time one often wants to formulate a series of statements about what happens at specific times. There is little consensus about proof-theory for ordinary modal logic. Many modal-logical proof systems lack important properties and the relationships between proof systems for different modal logics are often unclear. The present book demonstrates that hybrid-logical proof-theory remedies this lack of uniformity in ordinary modal-logical proof systems. It considers a spectrum of different versions of hybrid logic (propositional, first-order, international first-order, and intuitionist) and of different types of proof-systems for hybrid-logic (natural deduction, Gentzen, tableaux, and axiom systems). All these systems can be motivated independently, but the fact that the systems can be given in a uniform way shows that hybrid logic and hybrid-logical proof theory is a natural enterprise.

Braüner Hybrid Logic and its Proof-Theory jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Preface;6
2;Contents;11
3;1 Introduction to Hybrid Logic;14
3.1;1.1 Informal Motivation;14
3.2;1.2 Formal Syntax and Semantics;18
3.2.1;1.2.1 Translation into First-Order Logic;20
3.3;1.3 The Origin of Hybrid Logic in Prior's Work;23
3.3.1;1.3.1 Did Prior Reach His Philosophical Goal?;27
3.4;1.4 The Development Since Prior;29
4;2 Proof-Theory of Propositional Hybrid Logic ;34
4.1;2.1 The Basics of Natural Deduction Systems;34
4.2;2.2 Natural Deduction for Propositional Hybrid Logic;38
4.2.1;2.2.1 Conditions on the Accessibility Relation;41
4.2.2;2.2.2 Some Admissible Rules;43
4.2.3;2.2.3 Soundness and Completeness;45
4.2.4;2.2.4 Normalization;50
4.2.5;2.2.5 The Form of Normal Derivations;56
4.2.6;2.2.6 Discussion;59
4.3;2.3 The Basics of Gentzen Systems;61
4.4;2.4 Gentzen Systems for Propositional Hybrid Logic;63
4.4.1;2.4.1 Soundness and Completeness;64
4.4.2;2.4.2 The Form of Derivations;66
4.4.3;2.4.3 Discussion;66
4.5;2.5 Axiom Systems for Propositional Hybrid Logic;67
4.5.1;2.5.1 Soundness and Completeness;69
4.5.2;2.5.2 Discussion;70
5;3 Tableaus and Decision Procedures for Hybrid Logic ;71
5.1;3.1 The Basics of Tableau Systems;71
5.2;3.2 A tableau System Including the Universal Modality;74
5.2.1;3.2.1 Tableau Rules for Hybrid Logic;74
5.2.2;3.2.2 Some Properties of the Tableau System;76
5.2.3;3.2.3 Systematic Tableau Construction;78
5.2.4;3.2.4 The Model Existence Theorem and Decidability;80
5.2.5;3.2.5 Tableau Examples;83
5.3;3.3 A Tableau System Not Including the Universal Modality;88
5.3.1;3.3.1 A Hybrid-Logical Version of Analytic Cuts;92
5.4;3.4 The Tableau Systems Reformulated as Gentzen Systems;95
5.5;3.5 Discussion;100
6;4 Comparison to Seligman's Natural Deduction System;103
6.1;4.1 The Natural Deduction Systems Under Consideration;103
6.1.1;4.1.1 Seligman's Original System;105
6.2;4.2 Translation from Seligman-Style Derivations;107
6.3;4.3 Translation to Seligman-Style Derivations;109
6.4;4.4 Reduction Rules;113
6.5;4.5 Discussion;118
7;5 Functional Completeness for a Hybrid Logic ;120
7.1;5.1 The Natural Deduction System Under Consideration;120
7.2;5.2 Introduction to Functional Completeness;123
7.3;5.3 The General Rule Schemas;124
7.3.1;5.3.1 Earlier Work on Functional Completeness;124
7.3.2;5.3.2 Rule Schemas for Hybrid Logic;128
7.3.3;5.3.3 Normalization and Conservativity;130
7.4;5.4 Functional Completeness;132
7.5;5.5 Discussion;136
8;6 First-Order Hybrid Logic ;138
8.1;6.1 Introduction to First-Order Hybrid Logic;138
8.1.1;6.1.1 Some Remarks on Existence and Quantification;142
8.1.2;6.1.2 Rigidified Constants;143
8.1.3;6.1.3 Translation into Two-Sorted First-Order Logic;146
8.2;6.2 Natural Deduction for First-Order Hybrid Logic;149
8.2.1;6.2.1 Conditions on the Accessibility Relation;150
8.2.2;6.2.2 Some Admissible Rules;153
8.2.3;6.2.3 Soundness and Completeness;154
8.2.4;6.2.4 Normalization;158
8.2.5;6.2.5 The Form of Normal Derivations;160
8.3;6.3 Axiom Systems for First-Order Hybrid Logic;161
9;7 Intensional First-Order Hybrid Logic ;164
9.1;7.1 Introduction to Intensional First-Order Hybrid Logic;164
9.1.1;7.1.1 Generalized Models;168
9.1.2;7.1.2 Translation into Three-Sorted First-Order Logic;171
9.2;7.2 Natural Deduction for Intensional First-Order Hybrid Logic;174
9.2.1;7.2.1 Soundness and Completeness: Generalized Models;175
9.2.2;7.2.2 Soundness and Completeness: Standard Models;177
9.3;7.3 Partial Intensions;179
10;8 Intuitionistic Hybrid Logic;181
10.1;8.1 Introduction to Intuitionistic Hybrid Logic;181
10.1.1;8.1.1 Relation to Many-Valued Semantics;185
10.1.2;8.1.2 Relation to Birelational Semantics;187
10.1.3;8.1.3 Translation into Intuitionistic First-Order Logic;188
10.2;8.2 Natural Deduction for Intuitionistic Hybrid Logic;190
10.2.1;8.2.1 Conditions on the Accessibility Relation;190
10.2.2;8.2.2 An Admissible Rule;193
10.2.3;8.2.3 Soundness and Completeness;193
10.2.4;8.2.4 Normalization;196
10.2.5;8.2.5 The Form of Normal Derivations;201
10.3;8.3 Axiom Systems for Intuitionistic Hybrid Logic;204
10.4;8.4 Axiom Systems for a Paraconsistent Hybrid Logic;205
10.4.1;8.4.1 Soundness and Completeness;208
10.5;8.5 A Curry-Howard Interpretation of Intuitionistic Hybrid Logic;210
11;9 Labelled Versus Internalized Natural Deduction ;212
11.1;9.1 A Labelled Natural Deduction System for Modal Logic;212
11.2;9.2 The Internalization Translation;213
11.3;9.3 Reductions;214
11.4;9.4 Comparison of Reductions;216
11.4.1;9.4.1 A Remark on Normalization;218
12;10 Why Does the Proof-Theory of Hybrid Logic Behave So Well? ;220
12.1;10.1 The Success Criteria;220
12.1.1;10.1.1 Standard Systems for Modal Logic;222
12.1.2;10.1.2 Labelled Systems for Modal Logic;222
12.2;10.2 Why Hybrid-Logical Proof-Theory Behaves So Well;223
12.3;10.3 Comparison to Internalization of Bivalent Semantics;226
12.4;10.4 Some Concluding Philosophical Remarks;228
13;References;230
14;Index;238



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.