Brandewinder | Machine Learning Projects for .NET Developers | Buch | 978-1-4302-6767-6 | sack.de

Buch, Englisch, 300 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 569 g

Brandewinder

Machine Learning Projects for .NET Developers


1. Auflage 2015
ISBN: 978-1-4302-6767-6
Verlag: Apress

Buch, Englisch, 300 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 569 g

ISBN: 978-1-4302-6767-6
Verlag: Apress


shows you how to build smarter .NET applications that learn from data, using simple algorithms and techniques that can be applied to a wide range of real-world problems. You’ll code each project in the familiar setting of Visual Studio, while the machine learning logic uses F#, a language ideally suited to machine learning applications in .NET. If you’re new to F#, this book will give you everything you need to get started. If you’re already familiar with F#, this is your chance to put the language into action in an exciting new context.

In a series of fascinating projects, you’ll learn how to:

  • Build an optical character recognition (OCR) system from scratch
  • Code a spam filter that learns by example
  • Use F#’s powerful type providers to interface with external resources (in this case, data analysis tools from the R programming language)
  • Transform your data intoinformative features, and use them to make accurate predictions
  • Find patterns in data when you don’t know what you’re looking for
  • Predict numerical values using regression models
  • Implement an intelligent game that learns how to play from experience

Along the way, you’ll learn fundamental ideas that can be applied in all kinds of real-world contexts and industries, from advertising to finance, medicine, and scientific research. While some machine learning algorithms use fairly advanced mathematics, this book focuses on simple but effective approaches. If you enjoy hacking code and data, this book is for you.

Brandewinder Machine Learning Projects for .NET Developers jetzt bestellen!

Zielgruppe


Popular/general


Autoren/Hrsg.


Weitere Infos & Material


Chapter 1: 256 Shades of Gray: Building A Program to Automatically Recognize Images of Numbers

Chapter 2: Spam or Ham? Detecting Spam in Text Using Bayes' Theorem

Chapter 3: The Joy of Type Providers: Finding and Preparing Data, From Anywhere

Chapter 4: Of Bikes and Men: Fitting a Regression Model to Data with Gradient Descent

Chapter 5: You Are Not An Unique Snowflake: Detecting Patterns with Clustering and Principle Component Analysis

Chapter 6: Trees and Forests: Making Predictions from Incomplete Data

Chapter 7: A Strange Game: Learning From Experience with Reinforcement Learning

Chapter 8: Digits, Revisited: Optimizing and Scaling Your Algorithm Code

Chapter 9: Conclusion


Mathias Brandewinder is a Microsoft MVP for F# based in San Francisco, California. An unashamed math geek, he became interested early on in building models to help others make better decisions using data. He collected graduate degrees in Business, Economics and Operations Research, and fell in love with programming shortly after arriving in the Silicon Valley. He has been developing software professionally since the early days of.NET, developing business applications for a variety of industries, with a focus on predictive models and risk analysis.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.