Buch, Englisch, Band 12, 312 Seiten, laminated boards, Format (B × H): 161 mm x 240 mm, Gewicht: 640 g
Reihe: Oxford Lecture Series in Mathematics and Its Applications
Buch, Englisch, Band 12, 312 Seiten, laminated boards, Format (B × H): 161 mm x 240 mm, Gewicht: 640 g
Reihe: Oxford Lecture Series in Mathematics and Its Applications
ISBN: 978-0-19-850246-3
Verlag: OUP Oxford
The object of homogenization theory is the description of the macroscopic properties of structures with fine microstructure, covering a wide range of applications that run from the study of properties of composites to optimal design. The structures under consideration may model cellular elastic materials, fibred materials, stratified or porous media, or materials with many holes or cracks. In mathematical terms, this study can be translated in the asymptotic analysis
of fast-oscillating differential equations or integral functionals. The book presents an introduction to the mathematical theory of homogenization of nonlinear integral functionals, with particular regard to those general results that do not rely on smoothness or convexity assumptions.
Homogenization results and appropriate descriptive formulas are given for periodic and almost- periodic functionals. The applications include the asymptotic behaviour of oscillating energies describing cellular hyperelastic materials, porous media, materials with stiff and soft inclusions, fibered media, homogenization of HamiltonJacobi equations and Riemannian metrics, materials with multiple scales of microstructure and with multi-dimensional structure. The book includes a specifically
designed, self-contained and up-to-date introduction to the relevant results of the direct methods of Gamma-convergence and of the theory of weak lower semicontinuous integral functionals depending on vector-valued functions. The book is based on various courses taught at the advanced graduate level.
Prerequisites are a basic knowledge of Sobolev spaces, standard functional analysis and measure theory. The presentation is completed by several examples and exercises.
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Chemie Chemie Allgemein Chemometrik, Chemoinformatik
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionalanalysis
- Mathematik | Informatik Mathematik Mathematische Analysis Reelle Analysis
- Naturwissenschaften Physik Mechanik Klassische Mechanik, Newtonsche Mechanik
- Naturwissenschaften Biowissenschaften Angewandte Biologie Biomathematik
- Mathematik | Informatik Mathematik Mathematische Analysis Moderne Anwendungen der Analysis
- Mathematik | Informatik Mathematik Mathematische Analysis Integralrechnungen- und -gleichungen
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Numerische Mathematik
- Mathematik | Informatik Mathematik Mathematische Analysis Harmonische Analysis, Fourier-Mathematik
- Mathematik | Informatik Mathematik Mathematische Analysis Vektoranalysis, Physikalische Felder




