Buch, Englisch, 838 Seiten, Format (B × H): 232 mm x 154 mm, Gewicht: 1310 g
Production, Biocatalysis, and Industrial Applications
Buch, Englisch, 838 Seiten, Format (B × H): 232 mm x 154 mm, Gewicht: 1310 g
ISBN: 978-0-443-19059-9
Verlag: Elsevier Science
Biotechnology of Microbial Enzymes: Production, Biocatalysis, and Industrial Applications, Second Edition provides a complete survey of the latest innovations on microbial enzymes, highlighting biotechnological advances in their production and purification along with information on successful applications as biocatalysts in several chemical and industrial processes under mild and green conditions.
The application of recombinant DNA technology within industrial fermentation and the production of enzymes over the last three decades have produced a host of useful chemical and biochemical substances. The power of these technologies results in novel transformations, better enzymes, a wide variety of applications, and the unprecedented development of biocatalysts through the ongoing integration of molecular biology methodology, all of which is covered insightfully and in-depth within the book.
This fully revised, second edition is updated to address the latest research developments and applications in the field, from microbial enzymes recently applied in drug discovery to penicillin biosynthetic enzymes and penicillin acylase, xylose reductase, and microbial enzymes used in antitubercular drug design. Across the chapters, the use of microbial enzymes in sustainable development and production processes is fully considered, with recent successes and ongoing challenges highlighted.
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1. Biotechnology of microbial enzymes: production, biocatalysis, and industrial applications-an overview Goutam Brahmachari
1.1 Introduction 1.2 An overview of the book 1.2.1 Chapter 2 1.2.2 Chapter 3 1.2.3 Chapter 4 1.2.4 Chapter 5 1.2.5 Chapter 6 1.2.6 Chapter 7 1.2.7 Chapter 8 1.2.8 Chapter 9 1.2.9 Chapter 10 1.2.10 Chapter 11 1.2.11 Chapter 12 1.2.12 Chapter 13 1.2.13 Chapter 14 1.2.14 Chapter 15 1.2.15 Chapter 16 1.2.16 Chapter 17 1.2.17 Chapter 18 1.2.18 Chapter 19 1.2.19 Chapter 20 1.2.20 Chapter 21 1.2.21 Chapter 22 1.2.22 Chapter 23 1.2.23 Chapter 24 1.2.24 Chapter 25 1.2.25 Chapter 26 1.3 Concluding remarks
2. Useful microbial enzymes-an introduction Beatriz Ruiz-Villafa´n, Romina Rodri´guez-Sanoja and Sergio Sa´nchez 2.1 The enzymes: a class of useful biomolecules 2.2 Microbial enzymes for industry 2.3 Improvement of enzymes 2.4 Discovery of new enzymes 2.5 Concluding remarks Acknowledgments Abbreviations References
3. Production, purification, and application of microbial enzymes Anil Kumar Patel, Cheng-Di Dong, Chiu-Wen Chen, Ashok Pandey and Reeta Rani Singhania 3.1 Introduction 3.2 Production of microbial enzymes 3.2.1 Enzyme production in industries 3.2.2 Industrial enzyme production technology 3.3 Strain improvements 3.3.1 Mutation 3.3.2 Recombinant DNA technology 3.3.3 Clustered regularly interspaced short palindromic repeats-Cas9 technology 3.3.4 Protein engineering 3.4 Downstream processing/enzyme purification 3.5 Product formulations 3.6 Global enzyme market scenarios 3.7 Industrial applications of enzymes 3.7.1 Food industry 3.7.2 Textile industry 3.7.3 Detergent industry 3.7.4 Pulp and paper industry 3.7.5 Animal feed industry 3.7.6 Leather industry 3.7.7 Biofuel from biomass 3.7.8 Enzyme applications in the chemistry and pharma sectors 3.8 Concluding remarks Abbreviations References
4. Solid-state fermentation for the production of microbial cellulases Sudhanshu S. Behera, Ankush Kerketta and Ramesh C. Ray 4.1 Introduction 4.2 Solid-state fermentation 4.2.1 Comparative aspects of solid-state and submerged fermentations 4.2.2 Cellulase-producing microorganisms in solid-state fermentation 4.2.3 Extraction of microbial cellulase in solid-state fermentation 4.2.4 Measurement of cellulase activity in solid-state fermentation 4.3 Lignocellulosic residues/wastes as solid substrates in solid-state fermentation 4.4 Pretreatment of agricultural residues 4.4.1 Physical pretreatments 4.4.2 Physiochemical pretreatment 4.4.3 Chemical pretreatments 4.4.4 Biological pretreatment 4.5 Environmental factors affecting microbial cellulase production in solid-state fermentation 4.5.1 Water activity/moisture content 4.5.2 Temperature 4.5.3 Mass transfer processes: aeration and nutrient diffusion 4.5.4 Substrate particle size 4.5.5 Other factors 4.6 Strategies to improve production of microbial cellulase 4.6.1 Metabolic engineering and strain improvement 4.6.2 Recombinant strategy (heterologous cellulase expression) 4.6.3 Mixed-culture (coculture) systems 4.7 Fermenter (bioreactor) design for cellulase production in solid-state fermentation 4.7.1 Tray bioreactor 4.7.2 Packed bed reactor 4.7.3 Rotary drum bioreactor 4.7.4 Fluidized bed reactor 4.8 Biomass conversions and application of microbial cellulase 4.8.1 Textile industry 4.8.2 Laundry and detergent 4.8.3 Paper and pulp industry 4.8.4 Bioethanol and biofuel production 4.8.5 Food industry 4.8.6 Agriculture 4.9 Concluding remarks Abbreviations References
5. Hyperthermophilic subtilisin-like proteases from Thermococcus kodakarensis Ryo Uehara, Hiroshi Amesaka, Yuichi Koga, Kazufumi Takano, Shigenori Kanaya and Shun-ichi Tanaka 5.1 Introduction 5.2 Two Subtilisin-like proteases from Thermococcus Kodakarensis KOD1 5.3 TK-subtilisin 5.3.1 Ca21-dependent maturation of Tk-subtilisin 5.3.2 Crystal structures of Tk-subtilisin 5.3.3 Requirement of Ca21-binding loop for folding 5.3.4 Ca21 ion requirements for hyperstability 5.3.5 Role of Tkpro 5.3.6 Role of the insertion sequences 5.3.7 Cold-adapted maturation through Tkpro engineering 5.3.8 Degradation of PrPSc by Tk-subtilisin 5.3.9 Tk-subtilisin pulse proteolysis experiments 5.4 Tk-SP 5.4.1 Maturation of Pro-Tk-SP 5.4.2 Crystal structure of Pro-S359A 5.4.3 Role of proN 5.4.4 Role of the C-domain 5.4.5 PrPSc degradation by Tk-SP 5.5 Concluding remarks Acknowledgments Abbreviations References
6. Enzymes from basidiomycetes-peculiar and efficient tools for biotechnology Thai´s Marques Uber, Emanueli Backes, Vini´cius Mateus Salvatore Saute, Bruna Polacchine da Silva, Rubia Carvalho Gomes Corre^ a, Camila Gabriel Kato, Fla´vio Augusto Vicente Seixas, Adelar Bracht and Rosane Marina Peralta 6.1 Introduction 6.2 Brown- and white-rot fungi 6.3 Isolation and laboratory maintenance of wood-rot basidiomycetes 6.4 Basidiomycetes as producers of enzymes involved in the degradation of lignocellulose biomass 6.4.1 Enzymes involved in the degradation of cellulose and hemicelluloses 6.4.2 Enzymes involved in lignin degradation 6.5 Production of ligninolytic enzymes by basidiomycetes: screening and production in laboratory scale 6.6 General characteristics of the main ligninolytic enzymes with potential biotechnological applications 6.6.1 Laccases 6.6.2 Peroxidases 6.7 Industrial and biotechnological applications of ligninolytic enzymes from basidiomycetes 6.7.1 Application of ligninolytic enzymes in delignification of vegetal biomass and biological detoxification for biofuel production 6.7.2 Application of ligninolytic enzymes in the degradation of xenobiotic compounds 6.7.3 Application of ligninolytic enzymes in the degradation of textile dyes 6.7.4 Application of ligninolytic enzymes in pulp and paper industry 6.8 Concluding remarks Acknowledgments Abbreviations References
7. Metagenomics and new enzymes for the bioeconomy to 2030 Patricia Molina-Espeja, Cristina Coscoli´n, Peter N. Golyshin and Manuel Ferrer 7.1 Introduction 7.2 Metagenomics 7.3 Activity-based methods for enzyme search in metagenomes 7.4 Computers applied to metagenomic enzyme search 7.5 Concluding remarks Acknowledgments References
8. Enzymatic biosynthesis of ?-lactam antibiotics Swati Srivastava, Reeta Bhati and Rajni Singh 8.1 Introduction 8.2 Enzymes involved in the biosynthesis of ?-lactam antibiotics 8.2.1 Isopenicillin N synthase 8.2.2 ?-Lactam synthetase 8.2.3 Carbapenam synthetase (Cps) 8.2.4 Tabtoxinine ?-lactam synthetase (Tbl S) 8.2.5 Deacetoxycephalosporin C synthase and deacetylcephalosporin C synthase 8.2.6 Clavaminic acid synthase 8.2.7 Nonribosomal peptide synthetases 8.3 Semisynthetic ?-lactam derivatives 8.4 Concluding remarks Abbreviations References
9. Insights into the molecular mechanisms of ?-lactam antibiotic synthesizing and modifying enzymes in fungi Juan F. Marti´n, Carlos Garci´a-Estrada and Paloma Liras 9.1 Introduction 9.1.1 Penicillin and cephalosporin biosynthesis: a brief overview 9.1.2 Genes involved in penicillin and cephalosporin biosynthesis 9.2 ACV synthetase 9.2.1 The ACV assembly line 9.2.2 The cleavage function of the integrated thioesterase domain 9.3 Isopenicillin N synthase 9.3.1 Binding and lack of cyclization of the LLL-ACV 9.3.2 The iron-containing active center 9.3.3 The crystal structure of isopenicillin N synthase 9.3.4 Recent advances in the cyclization mechanism 9.4 Acyl-CoA ligases: a wealth of acyl-CoA ligases activate penicillin side-chain precursors 9.5 Isopenicillin N acyltransferase (IAT) 9.5.1 Posttranslational maturation of the IAT 9.5.2 The IPN/6-APA/PenG substrate-binding pocket 9.5.3 A transient acyl-IAT intermediate 9.5.4 The origin of IAT: an homologous AT in many fungal genomes 9.6 Transport of intermediates and penicillin secretion 9.6.1 Transport of isopenicillin N into peroxisomes 9.6.2 IAT is easily accessible to external 6-APA 9.6.3 Intracellular traffic of intermediates and secretion of penicillins 9.7 Production of semisynthetic penicillins by penicillin acylases 9.7.1 Molecular mechanisms of penicillin acylases 9.7.2 Novel developments in industrial applications of penicillin acylases 9.8 Concluding remarks Abbreviations References
10. Role of glycosyltransferases in the biosynthesis of antibiotics Pankaj Kumar, Sanju Singh, Vishal A. Ghadge, Harshal Sahastrabudhe, Meena R. Rathod and Pramod B. Shinde 10.1 Introduction 10.2 Classification and structural insights of glycosyltransferases 10.3 Role of glycosylation in enhancing bioactivity 10.3.1 Vancomycin 10.3.2 Tiacumicin B 10.3.3 Amycolatopsins 10.3.4 Digitoxin 10.3.5 Aminoglycosides 10.4 Engineering biosynthetic pathway of antibiotics by altering glycosyltransferases 10.4.1 Combinatorial biosynthesis 10.4.2 Glycorandomization 10.5 Identification of glycosyltransferases and glycosylated molecules using bioinformatics 10.6 Concluding remarks Abbreviations References
11. Relevance of microbial glucokinases Beatriz Ruiz-Villafa´n, Diana Rocha, Alba Romero and Sergio Sa´nchez 11.1 Introduction 11.2 Synthesis, biochemical properties, and regulation 11.3 Structure 11.4 Catalytic mechanism 11.5 Production 11.6 Potential applications in industrial processes 11.7 Concluding remarks Acknowledgments References
12. Myctobacterium tuberculosis DapA as a target for antitubercular drug design Ayushi Sharma, Ashok Kumar Nadda and Rahul Shrivastava 12.1 Introduction 12.1.1 Tuberculosis: global epidemiology 12.2 Challenges encountered by the scientific communities 12.3 MTB cell wall: a source of drug targets 12.3.1 Targeting MTB cell wall enzymes 12.4 The diaminop