Buch, Englisch, 524 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 1660 g
Reihe: Massive Computing
Methods and Applications
Buch, Englisch, 524 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 1660 g
Reihe: Massive Computing
ISBN: 978-1-4419-5205-9
Verlag: Springer US
The book is aimed at both academic and practising audiences. It can serve as a reference or textbook for senior or graduate level students in Engineering, Computer, and Management Sciences who are interested in data mining technologies. The book will be useful for practitioners interested in utilizing data mining techniques in design and manufacturing as well as for computer software developers engaged in developing data mining tools.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Informationstheorie, Kodierungstheorie
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Kryptologie, Informationssicherheit
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Informationstheorie, Kodierungstheorie
Weitere Infos & Material
I: Overview of Data Mining.- 1 Data Mining: An Introduction.- 2 A Survey of Methodologies and Techniques for Data Mining and Intelligent Data Discovery.- II: Data Mining in Product Design.- 3 Data Mining in Scientific Data.- 4 Learning to Set Up Numerical Optimizations of Engineering Designs.- 5 Automatic Classification and Creation of Classification Systems Using Methodologies of “Knowledge Discovery in Databases (KDD)”.- 6 Data Mining for Knowledge Acquisition in Engineering Design.- 7 A Data Mining-Based Engineering Design Support System: A Research Agenda.- III: Data Mining in Manufacturing.- 8 Data Mining for High Quality and Quick Response Manufacturing.- 9 Data Mining for Process and Quality Control in the Semiconductor Industry.- 10 Analyzing Maintenance Data Using Data Mining Methods.- 11 Methodology of Mining Massive Data Sets for Improving Manufacturing Quality/Efficiency.- 12 Intelligent Process Control System for Quality Improvement by Data Mining in the Process Industry.- 13 Data Mining by Attribute Decomposition with Semiconductor Manufacturing Case Study.- 14 Derivation of Decision Rules for the Evaluation of Product Performance Using Genetic Algorithms and Rough Set Theory.- 15 An Evaluation of Sampling Methods for Data Mining with Fuzzy C-Means.- 16 Colour Space Mining for Industrial Monitoring.- 17 Non-Traditional Applications of Data Mining.- 18 Fuzzy-Neural-Genetic Layered Multi-Agent Reactive Control of Robotic Soccer.- IV: Enabling Technologies for Data Mining in Design and Manufacturing.- 19 Method-Specific Knowledge Compilation.- 20 A Study of Technical Challenges in Relocation of a Manufacturing Site.- 21 Using Imprecise Analogical Reasoning to Refine the Query Answers for Heterogeneous Multidatabase Systems in Virtual Enterprises.- 22 TheUse of Process Capability Data in Design.