Bozdogan | Proceedings of the First US/Japan Conference on the Frontiers of Statistical Modeling: An Informational Approach | E-Book | sack.de
E-Book

E-Book, Englisch, 417 Seiten, eBook

Bozdogan Proceedings of the First US/Japan Conference on the Frontiers of Statistical Modeling: An Informational Approach

Volume 2 Multivariate Statistical Modeling

E-Book, Englisch, 417 Seiten, eBook

ISBN: 978-94-011-0800-3
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark



Often a statistical analysis involves use of a set of alternative models for the data. A "model-selection criterion" is a formula which provides a figure-of merit for the alternative models. Generally the alternative models will involve different numhers of parameters. Model-selection criteria take into account hoth the goodness-or-fit of a model and the numher of parameters used to achieve that fit. 1.1. SETS OF ALTERNATIVE MODELS Thus the focus in this paper is on data-analytic situations ill which there is consideration of a set of alternative models. Choice of a suhset of explanatory variahles in regression, the degree of a polynomial regression, the number of factors in factor analysis, or the numher of dusters in duster analysis are examples of such situations. 1.2. MODEL SELECTION VERSUS HYPOTHESIS TESTING In exploratory data analysis or in a preliminary phase of inference an approach hased on model-selection criteria can offer advantages over tests of hypotheses. The model-selection approach avoids the prohlem of specifying error rates for the tests. With model selection the focus can he on simultaneous competition between a hroad dass of competing models rather than on consideration of a sequence of simpler and simpler models.
Bozdogan Proceedings of the First US/Japan Conference on the Frontiers of Statistical Modeling: An Informational Approach jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


of Volume 2.- Summary of Contributed Papers to Volume 2.- 1. Some Aspects of Model-Selection Criteria.- 2. Mixture-Model Cluster Analysis Using Model Selection Criteria and a New Informational Measure of Complexity.- 3. Information and Entropy in Cluster Analysis.- 4. Information-Based Validity Functionals for Mixture Analysis.- 5. Unsupervised Classification with Stochastic Complexity.- 6. Modelling Principal Components with Structure.- 7. AIC-Replacements for Some Multivariate Tests of Homogeneity with Applications in Multisample Clustering and Variable Selection.- 8. High Dimensional Covariance Estimation: ‘Avoiding The Curse of Dimensionality’.- 9. Categorical Data Analysis by AIC.- 10. Longitudinal Data Models with Fixed and Random Effects.- 11. Multivariate Autoregressive Modeling for Analysis of Biomedical Systems with Feedback.- 12. A Simulation Study of Information Theoretic Techniques an Hypothesis Tests in One Factor ANOVA.- 13. Roles of Fisher Type Information in Latent Trait Models.- 14. A Review of Applications of AIC in Psychometrics.- Index to Volume 2.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.