E-Book, Englisch, 294 Seiten, Web PDF
Boyle / Spence Stress Analysis for Creep
1. Auflage 2013
ISBN: 978-1-4831-0160-6
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 294 Seiten, Web PDF
ISBN: 978-1-4831-0160-6
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Jason R. Spence, PhD, is an Associate Professor of Internal Medicine, Cell and Developmental Biology and Biomedical Engineering at the University of Michigan Medical School. He attended Canisius College in Buffalo, NY, as an undergraduate. He attended graduate school at Miami University (Ohio) where his research focused on understanding mechanisms that drive regeneration and tissue repair in unique model organisms that maintain regenerative ability throughout life, including Notophthalmus viridescens (Eastern Newt), Ambystoma mexicanum (Axolotl) and the chick. He performed postdoctoral research Cincinnati Children's Hospital, where he turned his focus to understanding mechanisms that regulate embryonic development of endoderm-derived tissue (pancreas, liver, intestine) and utilized human pluripotent stem cells (hPSCs) to understand human differentiation and development. During this time, he pioneered methods to differentiate 3-dimensional intestinal organoids from human pluripotent stem cells. In 2011, Dr. Spence joined the faculty of the University of Michigan Medical School. The focus of the Spence lab include using 3-dimensional organoid human models to study human development and disease, with research focused on understanding intestinal, lung and esophageal development, homeostasis and disease.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Stress Analysis for Creep;4
3;Copyright Page;5
4;Table of Contents;10
5;Preface;6
6;Chapter 1. Introduction;14
6.1;1.1 The occurrence of creep in mechanical engineering components;14
6.2;1.2 Background to stress analysis for creep;17
6.3;1.3 General-purpose computer programs for creep analysis;18
6.4;References;18
7;Chapter 2. A phenomenological description of creep
;20
7.1;2.1 The phenomenon of creep;20
7.2;2.2 The physical mechanisms of creep;24
7.3;2.3 Convenient uniaxial constitutive relationships;25
7.4;2.4 Creep rupture;30
8;Chapter 3. Simple component behaviour;34
8.1;3.1 Example: Steady creep of a beam in bending;34
8.2;3.2 Example: Steady creep of a non-uniformly heated structure;39
8.3;3.3 Example: Forward creep of a hinged bar structure;42
8.4;3.4 Example: Cyclic creep of a hinged bar structure;46
8.5;3.5 Example: Relaxation of a beam in bending;48
9;Chapter 4. Creep under multiaxial states of stress;52
9.1;4.1 A convenient multiaxial constitutive relation;52
9.2;4.2 Further generalisations;56
9.3;4.3 Example: Steady creep of a thick cylinder;57
9.4;4.4 Example: Steady creep of a holed plate under uniform tension;62
9.5;4.5 Example: Steady creep in membrane shells;65
9.6;4.6 Example: Steady creep of thin plates in bending;68
9.7;4.7 The general boundary value problem for steady creep;71
9.8;4.8 Example: Steady creep of a bar in torsion;73
10;Chapter 5. Stress analysis for steady creep;76
10.1;5.1 Numerical methods – iteration;76
10.2;5.2 Example: Steady creep of a thin tube under bending and internal pressure;80
10.3;5.3 Example: Steady creep of a rotating disc;83
10.4;5.4 Energy methods;87
10.5;5.5 Example: Steady creep of a cantilever beam;97
10.6;5.6 Example: Steady creep of an annular plate;101
10.7;5.7 Approximate generalised models for power-law creep;105
10.8;5.8 Example: Steady creep of a curved pipe under in-plane bending;115
11;Chapter 6. Reference stress methods in steady creep;121
11.1;6.1 Existence of a reference stress for the power law;124
11.2;6.2 Reference stresses for combined loading with a power law;127
11.3;6.3 Non-isothermal power-law creep;130
11.4;6.4 Reference temperatures;134
11.5;6.5 A local reference stress method;137
11.6;6.6 Approximate reference stress methods;143
11.7;6.7 A general local reference stress method;144
11.8;6.8 Further approximations;146
11.9;6.9 Summary;149
12;Chapter 7. Stress analysis for transient creep;150
12.1;7.1 Example: Forward creep of a pin-jointed framework;150
12.2;7.2 Example: Forward creep of a thin tube in bending;153
12.3;7.3 The general equations of stress redistribution;155
12.4;7.4 Numerical solution of initial value problems;161
12.5;7.5 Example: Creep of a pressurised thick sphere with a radial temperature gradient
;169
12.6;7.6 Numerical solution of transient creep problems using the finite element method
;175
13;Chapter 8. Approximate solution of transient creep problems;182
13.1;8.1 Constant load-isothermal creep;183
13.2;8.2 Some examples;187
13.3;8.3 Constant load-non–isothermal creep
;189
13.4;8.4 Variable loading;190
13.5;8.5 Cyclic loading;193
13.6;8.6 Some examples;196
13.7;8.7 Further developments;201
13.8;8.8 Constant displacements - the relaxation problem;204
13.9;8.9 Some examples;207
13.10;8.10 Generalised models in transient creep;210
14;Chapter 9. Creep rupture;215
14.1;9.1 Constitutive equations for creep rupture;215
14.2;9.2 Multiaxial constitutive equations for creep rupture;218
14.3;9.3 Example: Creep rupture of a multi-bar structure;221
14.4;9.4 Continuum damage mechanics;226
14.5;9.5 Example: Creep rupture of a thick cylinder;229
14.6;9.6 Estimation of failure times in deteriorating structures;236
14.7;9.7 A reference stress for rupture time;241
15;Chapter 10. Creep buckling;244
15.1;10.1 Example: Creep buckling of a shallow Mises truss;244
15.2;10.2 Example: Creep buckling of an asymmetric arch;250
15.3;10.3 Creep in the presence of large deformations;256
15.4;10.4 Creep buckling of thin-walled structures;259
16;Chapter 11. Design for creep;261
16.1;11.1 Material data requirements and constitutive modelling for design;261
16.2;11.2 Verification and qualification of stress analysis;275
16.3;11.3 Design methodology;284
17;Index;294




