Bowman | Diagrammatic Algebra | Buch | 978-3-031-88800-7 | sack.de

Buch, Englisch, 376 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 677 g

Reihe: Universitext

Bowman

Diagrammatic Algebra


Erscheinungsjahr 2025
ISBN: 978-3-031-88800-7
Verlag: Springer Nature Switzerland

Buch, Englisch, 376 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 677 g

Reihe: Universitext

ISBN: 978-3-031-88800-7
Verlag: Springer Nature Switzerland


provides the intuition and tools necessary to address some of the key questions in modern representation theory, chief among them Lusztig’s conjecture. This book offers a largely self-contained introduction to diagrammatic algebra, culminating in an explicit and entirely diagrammatic treatment of Geordie Williamson’s explosive torsion counterexamples in full detail.

The book begins with an overview of group theory and representation theory: first encountering Coxeter groups through their actions on puzzles, necklaces, and Platonic solids; then building up to non-semisimple representations of Temperley–Lieb and zig-zag algebras; and finally constructing simple representations of binary Schur algebras using the language of coloured Pascal triangles. Next, Kazhdan–Lusztig polynomials are introduced, with their study motivated by their combinatorial properties. The discussion then turns to diagrammatic Hecke categories and their associated -Kazhdan–Lusztig polynomials, explored in a hands-on manner with numerous examples. The book concludes by showing that the problem of determining the prime divisors of Fibonacci numbers is a special case of the problem of calculating -Kazhdan–Lusztig polynomials—using only elementary diagrammatic calculations and some manipulation of (5x5)-matrices. 

Richly illustrated and assuming only undergraduate-level linear algebra, this is a particularly accessible introduction to cutting-edge topics in representation theory. The elementary-yet-modern presentation will also be of interest to experts.

Bowman Diagrammatic Algebra jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


Part I: Groups.- 1 Symmetries.- 2 Coxeter groups and the 15 puzzle.- 3 Composition series.- 4 Platonic and Archimedean solids and special orthogonal groups.- Part II: Algebras and representation theory.- 5 Non-invertible symmetry.- 6 Representation theory.- Part III: Combinatorics.- 7 Catalan combinatorics within Kazhdan–Lusztig theory.- 8 General Kazhdan—Lusztig theory.- Part IV: Categorification.- 9 The diagrammatic algebra for S? × S? = S???.- 10 Lusztig’s conjecture in the diagrammatic algebra H(W,P).- Part V: Group theory versus diagrammatic algebra.- 11 Reformulating Lusztig’s and Andersen’s conjectures.- 12 Hidden gradings on symmetric groups.- 13 The -Kazhdan–Lusztig theory for Temperley–Lieb algebras.


Chris Bowman is a Reader in Pure Mathematics at the University of York, UK. His research interests lie broadly in combinatorial representation theory, with a particular focus on diagrammatic methods.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.