Bose | Patterned Random Matrices | Buch | 978-0-367-73446-6 | www2.sack.de

Buch, Englisch, 291 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 453 g

Bose

Patterned Random Matrices


1. Auflage 2020
ISBN: 978-0-367-73446-6
Verlag: Taylor & Francis

Buch, Englisch, 291 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 453 g

ISBN: 978-0-367-73446-6
Verlag: Taylor & Francis


Large dimensional random matrices (LDRM) with specific patterns arise in econometrics, computer science, mathematics, physics, and statistics. This book provides an easy initiation to LDRM. Through a unified approach, we investigate the existence and properties of the limiting spectral distribution (LSD) of different patterned random matrices as the dimension grows. The main ingredients are the method of moments and normal approximation with rudimentary combinatorics for support. Some elementary results from matrix theory are also used. By stretching the moment arguments, we also have a brush with the intriguing but difficult concepts of joint convergence of sequences of random matrices and its ramifications.

This book covers the Wigner matrix, the sample covariance matrix, the Toeplitz matrix, the Hankel matrix, the sample autocovariance matrix and the k-Circulant matrices. Quick and simple proofs of their LSDs are provided and it is shown how the semi-circle law and the Marchenko-Pastur law arise as the LSDs of the first two matrices. Extending the basic approach, we also establish interesting limits for some triangular matrices, band matrices, balanced matrices, and the sample autocovariance matrix. We also study the joint convergence of several patterned matrices, and show that independent Wigner matrices converge jointly and are asymptotically free of other patterned matrices.

Bose Patterned Random Matrices jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1. A unified framework

2. Common symmetric patterned matrices

3. Patterned XX matrices

4. k-Circulant matrices

5. Wigner type matrices

6. Balanced Toeplitz and Hankel matrices

7. Triangular matrices

8. Joint convergence of iid patterned matrices

9. Joint convergence of independent patterned matrices

10. Autocovariance matrix


Arup Bose is a Professor at the Indian Statistical Institute, Kolkata, India. He is a distinguished researcher in Mathematical Statistics and has been working in high-dimensional random matrices for the last fifteen years. He has been the Editor of Sankyha for several years and has been on the editorial board of several other journals. He is a Fellow of the Institute of Mathematical Statistics, USA and all three national science academies of India, as well as the recipient of the S.S. Bhatnagar Award and the C.R. Rao Award. His forthcoming books are the monograph, Large Covariance and Autocovariance Matrices (with Monika Bhattacharjee), to be published by Chapman & Hall/CRC Press, and a graduate text, U-statistics, M-estimates and Resampling (with Snigdhansu Chatterjee), to be published by Hindustan Book Agency.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.