Buch, Englisch, 327 Seiten, Format (B × H): 168 mm x 240 mm, Gewicht: 572 g
Buch, Englisch, 327 Seiten, Format (B × H): 168 mm x 240 mm, Gewicht: 572 g
Reihe: Frontiers in Elliptic and Parabolic Problems
ISBN: 978-3-031-28380-2
Verlag: Springer Nature Switzerland
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Introduction 5
Chapter 1. Preliminaries 11
1.1. List of symbols
1.2. Elementary inequalities
1.3. Domains with a conical point
1.4. The quasi-distance function re and its properties
1.5. Function spaces
1.5.1. Lebesgue spaces
1.5.2. Space M(G)
1.5.3. Regularization and Approximation by Smooth Functions
1.6. Hölder and Sobolev spaces
1.6.1. Notations and denitions
1.6.2. Sobolev embedding theorems
1.7. Weighted Sobolev spaces
1.8. Spaces of Dini continuous functions
1.9. Variable exponent spaces
1.10. The Nemyckij operator and its properties
1.11. Some functional analysis
1.12. The Cauchy problem for dierential inequalities
1.13. The dependence of the eigenvalues on the coecients of the dierential equation
1.14. Some informations about the gamma and Gegenbauer functions
1.15. Additional auxiliary results
1.15.1. Mean Value Theorem
1.15.2. Stampacchia's Lemma
1.15.3. Other assertions
1.16. Notes
Chapter 2. Eigenvalue problems
2.1. Linear eigenvalue problem
2.1.1. The eigenvalue problem for n = 2
2.1.2. The eigenvalue problem for n = 3
2.1.3. On properties of eigenvalues
2.2. Nonlinear eigenvalue problem
Chapter 3. Integral inequalities
3.1. The classical Hardy inequalities
3.2. The Friedrichs - Wirtinger type inequality
Chapter 4. Linear oblique derivative problem for elliptic second-order
equation in a domain with boundary conical point
4.1. Preliminaries
4.2. Setting of the problem
4.3. Global integral weighted estimate
4.4. Local integral weighted estimates
4.5. The power modulus of continuity
4.6. Examples
4.7. Notes
Chapter 5. Oblique derivative problem for elliptic second-order semilinear equations in a domain with a conical boundary point
5.1. Setting of the problem
5.2. Main result
5.3. Global integral weighted estimate
5.4. Local integral weighted estimates
5.5. Power modulus of continuity
Chapter 6. Behavior of weak solutions to the conormal problem for elliptic weak quasi-linear equations in a neighborhood of a conical boundary point
6.1. Setting of the problem
6.2. Maximum principle
6.3. Comparison principle
6.4. The barrier function. The preliminary estimate of the solution modulus
6.5. Local estimate at the boundary
6.6. Global integral estimate
6.7. Local integral weighted estimates
6.8. The power modulus of continuity at the conical point for weak solutions
6.9. Example
6.10. Notes
Chapter 7. Behavior of strong solutions to the degenerate oblique derivative problem for elliptic quasi-linear equations in a neighborhood of a boundary conical point
7.1. Setting of the problem
7.2. The barrier function. The preliminary estimate of the solution modulus
7.3. Integral weighted estimates
7.4. The power modulus of the continuity at the conical point
7.5. Notes
Chapter 8. Oblique derivative problem in a plane sector for elliptic second-order equation with perturbed p(x)-Laplacian
8.1. Setting of the problem
8.2. Preliminary
8.3. Maximum Principle
8.4. Comparison Principle
8.5. The barrier function. Estimation of the solution modulus
8.6. Proof of the main Theorem 9.3
Chapter 9. Oblique derivative problem in a bounded n-dimensional cone for strong quasi-linear elliptic second-order equation with perturbed p(x)-Laplacian
9.1. Setting of the problem
9.2. Preliminary
9.3. Maximum Principle
9.4. Comparison Principle
9.5. The barrier function
9.6. Estimation of the solution modulus. The proof of the main Theorem 9.3
Chapter 10. Existence of bounded weak solutions
10.1. Setting of the problem
10.2. Proof of the existence theorem
Bibliography
Index
Notation Index




