Borsuk | Interface Problems for Elliptic Second-Order Equations in Non-Smooth Domains | Buch | 978-3-031-64090-2 | sack.de

Buch, Englisch, 334 Seiten, Format (B × H): 168 mm x 240 mm, Gewicht: 585 g

Reihe: Frontiers in Mathematics

Borsuk

Interface Problems for Elliptic Second-Order Equations in Non-Smooth Domains


2. Auflage 2024
ISBN: 978-3-031-64090-2
Verlag: Springer Nature Switzerland

Buch, Englisch, 334 Seiten, Format (B × H): 168 mm x 240 mm, Gewicht: 585 g

Reihe: Frontiers in Mathematics

ISBN: 978-3-031-64090-2
Verlag: Springer Nature Switzerland


The goal of this book is to investigate the behavior of weak solutions to the elliptic interface problem in a neighborhood of boundary singularities: angular and conic points or edges. This problem is considered both for linear and quasi-linear equations, which are among the less studied varieties. As a second edition of (Birkhäuser, 2010), this volume includes two entirely new chapters: one about the oblique derivative problems for the perturbed -Laplacian equation in a bounded -dimensional cone, and another about the existence of bounded weak solutions.

Researchers and advanced graduate students will appreciate this compact compilation of new material in the field.

Borsuk Interface Problems for Elliptic Second-Order Equations in Non-Smooth Domains jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


- 1. Preliminaries.- 2. Eigenvalue Problem and Integro-Differential Inequalities.- 3. Best Possible Estimates of Solutions to the Interface Problem for Linear Elliptic Divergence
Second Order Equations in a Conical Domain.- 4. Interface Problem for the Laplace Operator with  Different Media.- 5. Interface Problem for Weak Quasi-Linear Elliptic Equations in a Conical Domain.- 6. Interface Problem for Strong Quasi-Linear Elliptic Equations in a Conical Domain.- 7. Best Possible Estimates of Solutions to the Interface Problem for a Quasi-Linear Elliptic Divergence Second Order Equation in a Domain with a Boundary Edge.- 8. Interface Oblique Derivative Problem for Perturbed -Laplacian Equation in a Bounded Dimensional Cone.- 9. Existence of Bounded Weak Solutions.


Mikhail Borsuk is a well-known specialist in nonlinear boundary value problems for elliptic equations in non-smooth domains. He is a student-follower of eminent mathematicians Y. B. Lopatinskiy and V. A. Kondratiev. He graduated from the Steklov Mathematical Institute of the Russian Academy of Sciences (Moscow) for his postgraduate studies and then worked at the Moscow Institute of Physics and Technology and the Central Aerohydrodynamic Institute of Professor N. E. Zhukovskiy. He is a professor emeritus at the University of Warmia and Mazury in Olsztyn (Poland), where he worked for more than 20 years. He has published 4 monographs, 2 textbooks for students, and   81 scientific articles.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.