Buch, Englisch, 306 Seiten, Book, Format (B × H): 156 mm x 234 mm, Gewicht: 1000 g
Reihe: Use R!
Buch, Englisch, 306 Seiten, Book, Format (B × H): 156 mm x 234 mm, Gewicht: 1000 g
Reihe: Use R!
ISBN: 978-1-4419-7975-9
Verlag: Springer
This book is aimed at professional researchers, practitioners, graduate students and teachers in ecology, environmental science and engineering, and in related fields such as oceanography, molecular ecology, agriculture and soil science, who already have a background in general and multivariate statistics and wish to apply this knowledge to their data using the R language, as well as people willing to accompany their disciplinary learning with practical applications. People from other fields (e.g. geology, geography, paleoecology, phylogenetics, anthropology, the social and education sciences, etc.) may also benefit from the materials presented in this book.
The three authors teach numerical ecology, both theoretical and practical, to a wide array of audiences, in regular courses in their Universities and in short courses given around the world. Daniel Borcard is lecturer of Biostatistics and Ecology and researcher in Numerical Ecology at Université de Montréal, Québec, Canada. François Gillet is professor of Community Ecology and Ecological Modelling at Université de Franche-Comté, Besançon, France. Pierre Legendre is professor of Quantitative Biology and Ecology at Université de Montréal, Fellow of the Royal Society of Canada, and ISI Highly Cited Researcher in Ecology/Environment.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Business Application Mathematische & Statistische Software
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Numerische Mathematik
- Naturwissenschaften Biowissenschaften Biowissenschaften Ökologie
- Geowissenschaften Umweltwissenschaften Angewandte Ökologie
Weitere Infos & Material
Introduction.- Exploratory data analysis.- Association measures and matrices.- Cluster analysis.- Unconstrained ordination.- Canonical ordination.- Spatial analysis of ecological data.