Bonvin | Advanced Control of Chemical Processes 1994 | E-Book | sack.de
E-Book

E-Book, Englisch, 560 Seiten, Web PDF

Reihe: IFAC Postprint Volume

Bonvin Advanced Control of Chemical Processes 1994


1. Auflage 2014
ISBN: 978-1-4832-9759-0
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 560 Seiten, Web PDF

Reihe: IFAC Postprint Volume

ISBN: 978-1-4832-9759-0
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



This publication brings together the latest research findings in the key area of chemical process control; including dynamic modelling and simulation - modelling and model validation for application in linear and nonlinear model-based control: nonlinear model-based predictive control and optimization - to facilitate constrained real-time optimization of chemical processes; statistical control techniques - major developments in the statistical interpretation of measured data to guide future research; knowledge-based v model-based control - the integration of theoretical aspects of control and optimization theory with more recent developments in artificial intelligence and computer science.

Bonvin Advanced Control of Chemical Processes 1994 jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;Reprinted from Advanced Control of Chemical Processes (ADCHEM'94);2
3;Copyright Page;3
4;Table of Contents;8
5;IFAC SYMPOSIUM ON ADVANCED CONTROL OF CHEMICAL PROCESSES (ADCHEM'94);4
6;Preface;6
7;PART I: TUTORIAL PAPER;14
7.1;Chapter 1. Nonlinear Input/Output Modeling;14
7.1.1;1 INTRODUCTION;14
7.1.2;2 MODEL STRUCTURES;14
7.1.3;3 MODEL BEHAVIOR;17
7.1.4;4 STRUCTURE SELECTION;18
7.1.5;5 HIGHER-ORDER STATISTICS;19
7.1.6;6 IDENTIFIABILITY AND INPUT SEQUENCE DESIGN;20
7.1.7;7 AN EXAMPLE;21
7.1.8;8 SUMMARY;26
7.1.9;9 REFERENCES;27
8;PART II: MODELING AND SIMULATION I;30
8.1;CHAPTER 2. SYSTEMATIC TECHNIQUES FOR DETERMINING MODELING REQUIREMENTS FOR SISO AND MIMO FEEDBACK CONTROL PROBLEMS;30
8.1.1;1. Introduction;30
8.1.2;2. Control Relevant Parameter Estimation;30
8.1.3;3. Solving the MIMO Estimation Problem;32
8.1.4;4. Conclusions;34
8.1.5;References;34
8.2;CHAPTER 3. DYNAMIC SIMULATION FOR INTEGRATED DESIGN AND CONTROL OF PROCESS FLOWSHEETS;36
8.2.1;1. INTRODUCTION;36
8.2.2;2. MODELLING ASPECTS;36
8.2.3;3. COMPUTATIONAL ASPECTS;38
8.2.4;4. APPLICATION EXAMPLE;39
8.2.5;5. CONCLUSION;41
8.2.6;6. REFERENCES;41
8.3;CHAPTER 4. DYNAMIC SIMULATION OF A MULTISTAGE REACTOR;42
8.3.1;1. INTRODUCTION;42
8.3.2;2. OVERVIEW AND MODELLING OF THE MULTISTAGE REACTOR EQUIPMENT;42
8.3.3;3. STUDY OF CONTROLLABILITY THROUGH DYNAMIC SIMULATION;44
8.3.4;4. CONCLUSION;46
8.3.5;5. REFERENCES;46
8.4;CHAPTER 5. POISSON WAVELETS APPLIED TO MODEL IDENTIFICATION;48
8.4.1;1. INTRODUCTION;48
8.4.2;2. POISSON WAVELET TRANSFORM;49
8.4.3;3. PARAMETER ESTIMATION;49
8.4.4;4. EXAMPLE: TANKS IN SERIES;49
8.4.5;5. MODEL VALIDATION;51
8.4.6;6. SUMMARY;51
8.4.7;7. REFERENCES;52
9;PART III: MODELING AND SIMULATION II;54
9.1;Chapter 6. Low Order Empirical Modeling for Nonlinear Systems;54
9.1.1;1 INTRODUCTION;54
9.1.2;2 THE EMPIRICAL MODEL;54
9.1.3;3 IDENTIFICATION FROM INPUT/OUTPUT DATA;55
9.1.4;4 EXAMPLES;56
9.1.5;5 SUMMARY/CONCLUSIONS;59
9.1.6;6 REFERENCES;59
9.2;CHAPTER 7. BILINEAR ID..TIF.C..I.. OF NONLINEAR PROCESSES;60
9.2.1;1 INTRODUCTION;60
9.2.2;2 INPUT/OUTPUT MODEL STRUCTURE;60
9.2.3;3 CALCULATION OF VOLTERRA KERNELS;62
9.2.4;4 PARAMETER CONSTRAINTS;62
9.2.5;5 PARAMETER ESTIMATION;63
9.2.6;6 FCCU EXAMPLE;64
9.2.7;7 CONCLUSIONS;64
9.2.8;REFERENCES;65
9.3;CHAPTER 8. SYSTEM IDENTIFICATION OF AN ADSORPTION PROCESS USING NEURAL NETWORKS;66
9.3.1;1. Introduction;66
9.3.2;2. The adsorption process for wastewater treatment;67
9.3.3;3. Artificial neural networks and their training;67
9.3.4;4. Results;68
9.3.5;5. Recurrent networks for full trajectory prediction;70
9.3.6;6. Discussion and Conclusions;70
9.3.7;References;71
9.4;CHAPTER 9. DYNAMIC MODELLING AND SIMULATION OF A MULTI-PURPOSE BATCH PILOT PLANT;72
9.4.1;1. INTRODUCTION;72
9.4.2;2. BATCH PILOT PLANT;73
9.4.3;3. PLANT MODEL;73
9.4.4;4. OPERATIONS MODEL;74
9.4.5;5. SIMULATIONS;75
9.4.6;6. CONCLUSION;77
9.4.7;7. NOMENCLATURE;77
9.4.8;8. REFERENCES;77
9.5;Chapter 10. Improved Training of Neural Networks with Complex Search Spaces;78
9.5.1;1 Introduction;78
9.5.2;2 Conventional offline training;79
9.5.3;3 The presented improvements;79
9.5.4;References;81
10;PART IV: NONLINEAR CONTROL AND OPTIMIZATION I;84
10.1;CHAPTER 11. ON-LINE SCHEDULE OPTIMIZATION FOR MIXED-BATCH/CONTINUOUS PLANTS;84
10.1.1;1. INTRODUCTION;84
10.1.2;2. SCHEDULING STRATEGY;84
10.1.3;3. REACTIVENESS;85
10.1.4;4. IMPLEMENTATION AND RESULTS;89
10.1.5;5. CONCLUSIONS;89
10.1.6;6. REFERENCES;89
10.2;CHAPTER 12. EFFICIENT COMPUTATION OF BATCH REACTOR CONTROL PROFILES UNDER PARAMETRIC UNCERTAINTY;90
10.2.1;1. INTRODUCTION;90
10.2.2;2. CONCEPT OF OPTIMIZATION UNDER UNCERTAINTY;91
10.2.3;3. SOLUTION STRATEGY;91
10.2.4;4. SIMULATION EXAMPLE;93
10.2.5;5. CONCLUSIONS;95
10.2.6;6. REFERENCES;95
10.3;CHAPTER 13. PARAMETER ESTIMATION AND NONLINEAR PREDICTIVE CONTROL FOR RTP;96
10.3.1;1. INTRODUCTION;96
10.3.2;2. MODEL DESCRIPTION;97
10.3.3;3. NONLINEAR PARAMETER ESTIMATION;98
10.3.4;4. MODEL TEANSFORMATION;99
10.3.5;5. NONLINEAR MODEL PREDICTIVE CONTROL;100
10.3.6;6. CONCLUSION;101
10.3.7;7. ACKNOWLEDGEMENT;101
10.3.8;8. REFERENCES;101
10.4;CHAPTER 14. MODEL-BASED PREDICTIVE CONTROL: THEORY AND IMPLEMENTATION ISSUES;102
10.4.1;1 INTRODUCTION;102
10.4.2;2 BASIC PHILOSOPHY OF LRPC;102
10.4.3;3 DERIVATION OF SISO LRPC;103
10.4.4;4 STABILITY ISSUES IN LRPC;104
10.4.5;5 CONSTRAINED LRPC;104
10.4.6;6 IMPLEMENTATION ISSUES;106
10.4.7;7 CONCLUDING REMARKS;106
10.4.8;REFERENCES;106
10.4.9;APPENDIX A;107
10.5;CHAPTER 15. INTEGRATED ADVANCED CONTROL AND CLOSED-LOOP REAL-TIME OPTIMIZATION OF AN OLEFINS PLANT;108
10.5.1;1. INTRODUCTION;108
10.5.2;2. OPTIMIZATION SYSTEM;109
10.5.3;3. ADVANCED CONTROL SYSTEM;110
10.5.4;4. COMPUTER SYSTEM;113
10.5.5;5. ECONOMIC BENEFITS;113
10.5.6;6. CONCLUSION;113
10.5.7;7. REFERENCES;113
11;PART V: KNOWLEDGE-BASED AND MODEL-BASED CONTROL I;114
11.1;Chapter 16. A Genetic Algorithm for MIMO Feedback Control System Design;114
11.1.1;1. INTRODUCTION;114
11.1.2;2. A CASE STUDY: THE SHELL PROBLEM;114
11.1.3;3. FEEDBACK CONTROL DESIGN USING SSV;115
11.1.4;4. A GENETIC ALGORITHM FOR FEEDBACK CONTROL DESIGN;116
11.1.5;5. SOLUTIONS TO THE SHELL PROBLEM;117
11.1.6;6. CONCLUSIONS;119
11.1.7;ACKNOWLEDGEMENT;119
11.1.8;REFERENCES;119
11.2;CHAPTER 17. DYNAMIC SYSTEM MODELLING USING MIXED NODE NEURAL NETWORKS;120
11.2.1;1. INTRODUCTION;120
11.2.2;2. NEURAL NETWORKS WITH MIXED TYPES OF HIDDEN NEURONS;120
11.2.3;3. SEQUENTIAL ORTHOGONAL TRAINING OF NEURAL NETWORKS;121
11.2.4;4. APPLICATION TO A DISTILLATION COLUMN;124
11.2.5;5. CONCLUSIONS;125
11.2.6;6. REFERENCES;125
11.3;CHAPTER 18. REAL-TIME CONTROL OF A WASTE WATER NEUTRALIZATION PROCESS USING RADIAL BASIS FUNCTIONS;126
11.3.1;1. INTRODUCTION;126
11.3.2;2. SYSTEM REPRESENTATION;127
11.3.3;3. CONTROLLER DESIGN;128
11.3.4;4. WASTE WATER pH NEUTRALIZATION;128
11.3.5;5. CONCLUSIONS;130
11.3.6;6. REFERENCES;131
12;PART VI: POSTER PAPERS I;132
12.1;CHAPTER 19. MODEL VALIDATION TEST;132
12.1.1;1. INTRODUCTION;132
12.1.2;2. PROBLEM FORMULATION;132
12.1.3;3. STRATEGY;133
12.1.4;4. INFINITY NORM AND STABILITY;133
12.1.5;5. DATA TRANSFORM;133
12.1.6;6. SELECTION OF ALL PASS FILTER;134
12.1.7;7. STABILITY DETERMINATION;135
12.1.8;8. NUMERICAL EXAMPLE;136
12.1.9;9. DISCUSSION;137
12.1.10;10. CONCLUSION;137
12.1.11;11. REFERENCES;137
12.2;CHAPTER 20. IDENTIFICATION OF COMBINED PHYSICAL AND EMPIRICAL MODELS USING NONLINEAR A PRIORI KNOWLEDGE;138
12.2.1;1. INTRODUCTION AND LITERATURE REVIEW;138
12.2.2;2. DATA EXTRACTION METHOD;139
12.2.3;3. THE CVA IDENTIFICATION METHOD;139
12.2.4;4. SIMULATION RESULTS;140
12.2.5;5. EXPERIMENTAL RESULTS;141
12.2.6;6. CONCLUSIONS;143
12.2.7;ACKNOWLEDGMENTS;143
12.2.8;REFERENCES;143
12.3;CHAPTER 21. COMPUTER-AIDED MODELLING : SPECIES TOPOLOGY;144
12.3.1;AIMS AND GOALS OF COMPUTER-AIDED MODELLING;144
12.3.2;PHYSICAL TOPOLOGY;145
12.3.3;CONSTRUCTION OF THE SPECIES TOPOLOGY;145
12.3.4;MODIFICATION OF SPECIES TOPOLOGY;146
12.3.5;A BRIEF EXAMPLE;147
12.3.6;CONCLUSION;149
12.3.7;References;149
12.4;CHAPTER 22. OPTIMIZATION OF PROCESS SYSTEMS WITH DISCONTINUITIES;150
12.4.1;1. INTRODUCTION;150
12.4.2;2. AN NLP FORMULATION FOR DAOP;151
12.4.3;3. NEW NLP FORMULATION WITH SMOOTH APPROXIMATION;153
12.4.4;4. CONCLUSIONS;155
12.4.5;5. REFERENCES;155
12.5;CHAPTER 23. STEAM BALANCE OPTIMIZATION IN CHEMICAL PLANT;156
12.5.1;1. INTRODUCTION;156
12.5.2;2. PROCESS DESCRIPTION;156
12.5.3;3. SYSTEM CONFIGURATION;157
12.5.4;4. SYSTEM FUNCTIONALITY;157
12.5.5;5. CURRENT STATUS OF THE PROJECT;158
12.5.6;6. CONCLUSION;159
12.6;CHAPTER 24. ADAPTIVE CONTROL OF MIMO NON-LINEAR SYSTEMS USING LOCAL ARX MODELS AND INTERPOLATION;160
12.6.1;1 INTRODUCTION;160
12.6.2;2 MODEL REPRESENTATION USING LOCAL MODELS AND INTERPOLATION;160
12.6.3;3 PARAMETER ESTIMATION;162
12.6.4;4 ADAPTIVE CONTROL;163
12.6.5;5 DISCUSSION;164
12.6.6;6 SIMULATION EXAMPLE;164
12.6.7;7 CONCLUDING REMARKS;166
12.6.8;ACKNOWLEDGMENTS;166
12.6.9;References;166
12.6.10;APPENDIX;166
12.7;CHAPTER 25. A DISTURBANCE ESTIMATOR FOR MODEL PREDICTIVE CONTROL;168
12.7.1;1. INTRODUCTION;168
12.7.2;2. DISTURBANCE PREDICTOR;169
12.7.3;3· EXAMPLES;170
12.7.4;4. CONCLUSIONS;172
12.7.5;5. REFERENCES;172
12.7.6;APPENDIX;173
12.8;Chapter 26. Controller Synthesis for Two-Time-Scale Nonlinear Processes;174
12.8.1;Introduction;174
12.8.2;Two-Time-Scale Processes: Preliminaries;174
12.8.3;Controller Synthesis for Two-Time-Scale Nonlinear Processes with Stable Fast Dynamics;175
12.8.4;Definitions of the various concepts of relative order;175
12.8.5;Controller Synthesis for Two-Time-Scale Nonlinear Processes with Unstable Fast Dynamics;177
12.8.6;Closed loop stability;178
12.8.7;Acknowledgement;178
12.8.8;References;178
12.9;CHAPTER 27. ANALYSIS AND SYNTHESIS METHODS FOR ROBUST MODEL PREDICTIVE CONTROL;180
12.9.1;1. INTRODUCTION;180
12.9.2;2. MULTIVARIABLE EQDMC;181
12.9.3;3. ROBUST STABILITY OF MIMO EQDMC;181
12.9.4;4. EQDMC PERFORMANCE;182
12.9.5;5. EQDMC TUNING METHODOLOGY;182
12.9.6;6. SIMULATION STUDIES;183
12.9.7;7. CONCLUSIONS;185
12.9.8;8. REFERENCES;185
12.10;CHAPTER 28. REDUCED HESSIAN SUCCESSIVE QUADRATIC PROGRAMMING FOR REALTIME OPTIMIZATION;186
12.10.1;1. REDUCED HESSIAN SQP;186
12.10.2;2. SOLUTION TECHNIQUES;187
12.10.3;3. PROCESS OPTIMIZATION;188
12.10.4;4. CONCLUSION;190
12.10.5;5. ACKNOWLEDGEMENTS;191
12.10.6;6. REFERENCES;191
12.11;Chapter 29. A real-time CAD environments for model predictive controllers;192
12.11.1;1. INTRODUCTION;192
12.11.2;2. CONCEPT OF MIPCON;193
12.11.3;3. APPLICATION STUDY;196
12.11.4;4. CONCLUSION;196
12.11.5;5. REFERENCES;197
13;PART VII: TUTORIAL PAPER;198
13.1;CHAPTER 30. NONLINEAR MODEL PREDICTIVE CONTROL: A TUTORIAL AND SURVEY;198
13.1.1;1. INTRODUCTION;198
13.1.2;2. MPC FOR LINEAR PLANTS;199
13.1.3;3. MPC FOR NONLINEAR PLANTS;203
13.1.4;4. CONCLUSIONS AND FUTURE OUTLOOK;208
13.1.5;5. REFERENCES;209
14;PART VIII: SURVEY PAPER;212
14.1;CHAPTER 31. THE PROCESS INDUSTRY REQUIREMENTS OF ADVANCED CONTROL TECHNIQUES: CHALLENGES AND OPPORTUNITIES;212
14.1.1;1. INTRODUCTION;212
14.1.2;2. THE HISTORICAL PERSPECTIVE;212
14.1.3;3. HISTORICAL PERSPECTIVE IN OTHER MANUFACTURING INDUSTRIES;214
14.1.4;4. REVIEW;215
14.1.5;5. STRENGTHS OF THE CHEMICAL PROCESS INDUSTRIES;215
14.1.6;6. WEAKNESSES;215
14.1.7;7. OPPORTUNITIES IN THE PROCESS INDUSTRIES;217
14.1.8;8. THREATS;218
14.1.9;9. MARKETING PROCESS CONTROL;219
14.1.10;10. INCREASING USER FRIENDLINESS;219
14.1.11;12. BENCHMARKING;220
14.1.12;13. TRAINING/EDUCATION;220
14.1.13;14. NEW PROCESS TECHNOLOGY;220
14.1.14;15. CONCLUSIONS;221
14.1.15;16. REFERENCES;221
14.1.16;17. ACKNOWLEDGEMENTS;221
15;PART IX: NONLINEAR CONTROL AND OPTIMIZATION II;222
15.1;CHAPTER 32. NONLINEAR PREDICTIVE CONTROL USING LOCAL MODELS - APPLIED TO A BATCH PROCESS;222
15.1.1;1 INTRODUCTION;222
15.1.2;2 LOCAL MODELLING;223
15.1.3;3 MODEL PREDICTIVE CONTROL;224
15.1.4;4 SIMULATION EXAMPLE;224
15.1.5;ACKNOWLEDGMENTS;227
15.1.6;5 CONCLUSIONS;227
15.1.7;REFERENCES;227
15.2;Chapter 33. Iterative refinement of model predictive control;228
15.2.1;1 Introduction;228
15.2.2;2 Modeling and predictive control;228
15.2.3;3 Parameter centering using adaptive control;229
15.2.4;4 Summary and Conclusions;232
15.2.5;References;232
15.3;CHAPTER 34. A CASE-STUDY IN ON-LINE OPTIMAL CONTROL;234
15.3.1;INTRODUCTION;234
15.3.2;REFERENCES;236
15.4;CHAPTER 35. OVERRIDE CONFIGURATION OF GENERALIZED PREDICTIVE CONTROL FOR A MULTI-PURPOSE CONTROL PROBLEM;242
15.4.1;1. INTRODUCTION;242
15.4.2;2. CONTROLLER;243
15.4.3;3. SIMULATION;244
15.4.4;4. CONCLUSION;246
15.4.5;5. Reference;246
16;PART X: MODELING AND SIMULATION III;248
16.1;CHAPTER 36. DYNAMICS AND STABILITY OF POLYMERIZATION PROCESS FLOWSHEETS USING POLYRED;248
16.1.1;1. INTRODUCTION;248
16.1.2;2. THE POLYRED PACKAGE;248
16.1.3;3. PROCESS STABILITY ANALYSIS;249
16.1.4;4. SOME EXAMPLES;250
16.1.5;5. CONCLUSIONS;254
16.1.6;6. ACKNOWLEDGMENTS;254
16.1.7;7. REFERENCES;254
16.2;CHAPTER 37. OPERATION SUPPORT SYSTEM USING DYNAMIC SIMULATION FOR A COMBINED BATCH/CONTINUOUS PLANT;256
16.2.1;1. INTRODUCTION;256
16.2.2;2. A COMBINED BATCH/CONTINUOUS PLANT;256
16.2.3;3. MODELING THE COMBINED BATCH/CONTINUOUS PLANT;257
16.2.4;4. OPERATION SUPPORT SYSTEM;258
16.2.5;5. OPERATIONAL GUIDANCE;258
16.2.6;6. REAL TIME IMPLEMENTATION IN THE ACTUAL PLANT;260
16.2.7;7. CONCLUDING REMARKS AND FUTURE DEVELOPMENT;261
16.2.8;8. ACKNOWLEDGMENTS;261
16.2.9;9. REFERENCES;261
16.3;CHAPTER 38. A DYNAMIC SIMULATION STRATEGY FOR CYCLED DISTRIBUTED PARAMETER SYSTEMS;262
16.3.1;1. INTRODUCTION;262
16.3.2;2. PROCESS DESCRIPTION;263
16.3.3;3. MATHEMATICAL MODELLING;263
16.3.4;4. SIMULATION STRATEGY AND NUMERICAL METHODS;264
16.3.5;5. EXAMPLE SIMULATION;265
16.3.6;6. CONCLUSIONS;266
16.3.7;7. NOMENCLATURE;267
16.3.8;8. REFERENCES;267
16.4;CHAPTER 39. LOCAL THERMODYNAMIC MODELS FOR DYNAMIC PROCESS SIMULATION;268
16.4.1;1. INTRODUCTION;268
16.4.2;2. MODEL;268
16.4.3;3. DISCUSSION;273
16.4.4;4. REFERENCES;273
16.5;CHAPTER 40. RIGOROUS DYNAMIC SIMULATION OF DISTILLATION COLUMNS BASED ON UV-FLASH;274
16.5.1;1 INTRODUCTION;274
16.5.2;2 DYNAMIC DISTILLATION MODELS;274
16.5.3;3 FLASH CALCULATIONS;276
16.5.4;4 THERMODYNAMICS;277
16.5.5;5 EXAMPLE COLUMN;278
16.5.6;6 CONCLUSION;279
16.5.7;REFERENCES;279
17;PART XI: NONUNEAR CONTROL AND OPTIMIZATION III;280
17.1;CHAPTER 41. A TRUST REGION STRATEGY FOR NEWTON-TYPE PROCESS CONTROL;280
17.1.1;1. INTRODUCTION;280
17.1.2;2. OVERVIEW OF THE CONTROL FORMULATION;281
17.1.3;3. TRUST REGION STRATEGIES FOR NONLINEAR OPTIMIZATION;281
17.1.4;4. PROCESS EXAMPLES;282
17.1.5;5. CONCLUSIONS;284
17.1.6;ACKNOWLEDGMENTS;285
17.1.7;6. REFERENCES;285
17.2;CHAPTER 42. A MULTIMODEL MIXED H2/H8 PROBLEM FOR PLANTS WITH STRUCTURED UNCERTAINTY;286
17.2.1;1. INTRODUCTION;286
17.2.2;2. PROBLEM FORMULATION;287
17.2.3;3. SOLUTION PROCEDURE;288
17.2.4;4. GRADIENT EXPRESSIONS;289
17.2.5;5. A DISTILLATION COLUMN EXAMPLE;290
17.2.6;6. CONCLUSIONS;290
17.2.7;ACKNOWLEDGMENTS;291
17.2.8;7. REFERENCES;291
17.3;CHAPTER 43. ROBUST MODEL PREDICTIVE CONTROL FOR NONLINEAR SYSTEMS WITH CONSTRAINTS;292
17.3.1;1. INTRODUCTION;292
17.3.2;2. MPC ALGORITHM;293
17.3.3;3. BASIC ASSUMPTIONS;295
17.3.4;4. ANALYSIS OF THE ALGORITHM;296
17.3.5;5. REFERENCES;297
17.4;Chapter 44. A Kalman filter based robust model predictive control with constraints;298
17.4.1;1. INTRODUCTION;298
17.4.2;2. ALGORITHMS;299
17.4.3;3. APPLICATION STUDY;302
17.4.4;4. CONCLUSION;303
17.4.5;5. REFERENCES;303
17.4.6;6. APPENDIX;303
17.5;CHAPTER 45. A PRACTICAL APPROACH TO APPROXIMATE INPUT-OUTPUT LINEARIZATION;304
17.5.1;1. INTRODUCTION;304
17.5.2;2. APPROXIMATE INPUT-OUTPUT MODELS;305
17.5.3;3. APPROXIMATE INPUT-OUTPUT LINEARIZING CONTROLLER SYNTHESIS;306
17.5.4;4. APPLICATION - VAN DE VUSSE REACTOR;307
17.5.5;5. CONCLUSIONS;308
17.5.6;Acknowledgements;309
17.5.7;REFERENCES;309
17.5.8;6. APPENDIX;309
18;PART XII: KNOWLEDGE-BASED AND MODEL-BASED CONTROL II;310
18.1;CHAPTER 46. FUZZY BASED CONTROL OF A DISTILLATION PLANT START-UP;310
18.1.1;1. INTRODUCTION;310
18.1.2;2. START-UP CONTROL STRUCTURING;310
18.1.3;3. EXPERIMENT;312
18.1.4;4. RESULTS AND DISCUSSION;314
18.1.5;5. CONCLUSION;315
18.1.6;REFERENCES;315
18.2;CHAPTER 47. DERIVATION OF FUZZY RULES FOR PARAMETER FREE PID GAIN TUNING;316
18.2.1;1. INTRODUCTION;316
18.2.2;2. STATEMENT OF THE PROBLEM;316
18.2.3;3. DERIVATION OF THE RULE BASE;317
18.2.4;4. APPLICATIONS;319
18.2.5;5. BUILDING ON THE EXPERT;320
18.2.6;6. CONCLUSION;320
18.2.7;7. ACKNOWLEDGEMENTS;321
18.2.8;8. REFERENCES;321
18.3;CHAPTER 48. A COMPARISON OF VARIOUS CONTROL SCHEMES FOR CONTINUOUS BIOREACTOR;322
18.3.1;1 INTRODUCTION;322
18.3.2;2 CONTROLLABILITY MEASURES;323
18.3.3;3 DYNAMIC MODEL;323
18.3.4;4 CONTROLLABILITY STUDY;325
18.3.5;5 SIMULATION RESULTS;326
18.3.6;6 CONCLUSIONS;327
18.3.7;7 REFERENCES;327
18.4;CHAPTER 49. CONTROLLER VERIFICATION UNDER NON-PARAMETRIC UNCERTAINTY;328
18.4.1;INTRODUCTION;328
18.4.2;NON-PARAMETRIC MONTE-CARLO;329
18.4.3;THE NSIM ALGORITHM;329
18.4.4;CSTR PROCESS;330
18.4.5;RESULTS;331
18.4.6;CONCLUSIONS;331
18.4.7;REFERENCES;332
18.5;CHAPTER 50. AUTOMATIC TUNING OF PID CONTROLLERS FOR UNSTABLE PROCESSES;334
18.5.1;1. INTRODUCTION;334
18.5.2;2. STABILIZABILITY OF UNSTABLE SYSTEMS BY PID CONTROLLERS;335
18.5.3;3. EXTENSION OF THE TUNING TECHNIQUE TO UNSTABLE SYSTEMS;336
18.5.4;4. TEST PROCESS;337
18.5.5;5. RESULTS;337
18.5.6;6. CONCLUSIONS;339
18.5.7;7. REFERENCES;339
19;PART XIII: POSTER PAPERS II;340
19.1;CHAPTER 51. A COMPARISON OF DEDUCTIVE AND INDUCTIVE MODELS FOR PRODUCT QUALITY ESTIMATION;340
19.1.1;1. INTRODUCTION;340
19.1.2;2. DEDUCTIVE MODEL;341
19.1.3;3. NEURAL NETWORK APPROACH;342
19.1.4;4. COMPARISON;343
19.1.5;5. HYBRID MODEL;344
19.1.6;6. CONCLUSIONS;345
19.1.7;7. REFERENCES;345
19.2;CHAPTER 52. EXTRACTION OF OPERATING SIGNATURES BY EPISODIC REPRESENTATION;346
19.2.1;1. INTRODUCTION;346
19.2.2;2. EPISODIC REPRESENTATION;346
19.2.3;3. SCALING FOR SPIKES AND TRENDS;348
19.2.4;4. ILLUSTRATIVE EXAMPLES;350
19.2.5;5. CONCLUDING REMARKS AND FUTURE DEVELOPMENT;351
19.2.6;6. REFERENCES;351
19.3;CHAPTER 53. MONITORING CHEMICAL REACTION SYSTEMS USING INCREMENTAL TARGET FACTOR ANALYSIS;352
19.3.1;1 Introduction;352
19.3.2;2 Target Factor Analysis;352
19.3.3;3 Incremental TFA;353
19.3.4;4 Monitoring Chemical Reaction Systems Using IncTFA;356
19.3.5;5 Conclusions;357
19.3.6;6 References;357
19.4;CHAPTER 54. SEQUENTIAL CONTROL ISSUES IN THE PLANT-WIDE CONTROL SYSTEM;358
19.4.1;1. INTRODUCTION;358
19.4.2;2. SEQUENTIAL CONTROL SYSTEM;359
19.4.3;3. GLOBAL STATE TRANSITION GRAPH;360
19.4.4;4. VERIFICATION OF THE SEQUENTIAL CONTROL SYSTEM WITH THE RULE TRANSITION GRAPH;361
19.4.5;5. TRANSLATION OF THE RULE TRANSITION GRAPH INTO THE PSEUDO-STATE TRANSITION GRAPH;362
19.4.6;6. CONCLUDING REMARKS AND FUTURE DEVELOPMENT;363
19.4.7;7. REFERENCES;363
19.5;CHAPTER 55. COMPARISON OF ADVANCED DISTILLATION CONTROL TECHNIQUES;364
19.5.1;1. INTRODUCTION;364
19.5.2;2. DISTILLATION CONTROL DIFFICULTY;365
19.5.3;3. CASE STUDY AND SIMULATOR;365
19.5.4;4. IMPLEMENTATION APPROACH FOR EACH CONTROLLER;366
19.5.5;5. RESULTS;367
19.5.6;6. CONCLUSION;369
19.5.7;7. REFERENCES;369
19.6;CHAPTER 56. A PROTOTYPE PACKAGE FOR SIMULTANEOUS PROCESS AND CONTROL SYSTEM DESIGN;370
19.6.1;1. INTRODUCTION;370
19.6.2;2. HDA PROCESS CONTROL SYSTEM SYNTHESIS;372
19.6.3;3. CONCLUSION;374
19.6.4;4. REFERENCES;374
19.7;Chapter 57. Opportunities and Difficulties with 5 x 5 Distillation Control;376
19.7.1;1 Introduction;376
19.7.2;2 5 x 5 Distillation Model;377
19.7.3;3 Controllability analysis;377
19.7.4;4 H8/µ control;379
19.7.5;5 Model Predictive 5 x 5 control;381
19.7.6;6 Conclusions;382
19.7.7;References;382
19.8;CHAPTER 58. ROBUST MULTIVARIABLE CONTROL SYSTEM DESIGNS THROUGH REAL-TIME SUPERVISORY KNOWLEDGE-BASED SYSTEMS;384
19.8.1;1. INTRODUCTION;384
19.8.2;2. PROCESS, CONTROL AND KBS DESCRIPTION;385
19.8.3;3. AUTOMATIC H8 CONTROLLER TUNING;385
19.8.4;4. CLOSED-LOOP ROBUSTNESS;386
19.8.5;5. PERFORMANCE ASSESSMENT;386
19.8.6;6. SUPERVISORY KBS PERFORMANCE;386
19.8.7;7. KBS VALIDATION TESTS;387
19.8.8;8. SUMMARY AND CONCLUSIONS;389
19.8.9;REFERENCES;389
19.9;CHAPTER 59. A COMPARISON OF NEURAL NETWORK BASED CONTROL STRATEGIES FOR A CSTR;390
19.9.1;1. INTRODUCTION;390
19.9.2;2. CONTROL PROBLEM;390
19.9.3;3. CONTROL STRATEGIES USING THE NEURAL NETWORKS;391
19.9.4;4. SIMULATION RESULTS;392
19.9.5;5. CONCLUSION;395
19.9.6;6. REFERENCES;395
19.10;CHAPTER 60. NONLINEAR MODELING USING NEURAL NETWORKS WITH MULTIRESOLUTION REPRESENTATIONS;396
19.10.1;1. INTRODUCTION;396
19.10.2;2. MULTIRESOLUTION REPRESENTATIONS;396
19.10.3;3. MODELING USING NEURAL NETWORKS;397
19.10.4;4. EXAMPLES;397
19.10.5;5. CONCLUSION;398
19.10.6;6. REFERENCES;399
19.11;CHAPTER 61. USING KNOWLEDGE-BASED NEURAL NETWORK PROCESS MODELS FOR MODEL-BASED CONTROL;402
19.11.1;1. INTRODUCTION;402
19.11.2;2. MANNIDENT NETWORK MODELS;403
19.11.3;3. THE CONTROL EXPERIMENTS;403
19.11.4;4. ANN MODEL-BASED CONTROLLERS;404
19.11.5;5. DISCUSSION AND CONCLUSIONS;407
19.11.6;6. REFERENCES;407
19.12;CHAPTER 62. RULE BASED COMBUSTION DISTURBANCE PREDICTION AND CONTROL SYSTEM;408
19.12.1;1. INTRODUCTION;408
19.12.2;2. OUTLINE OF REFUSE INCINERATOR;408
19.12.3;3. REFUSE INCINERATOR OPERATION EXPERT SYSTEM;409
19.12.4;4. INTELLIGENT COMBUSTION CONTROL FOR REFUSE INCINERATOR;411
19.12.5;5. SUMMARY;413
19.12.6;6. REFERENCES;413
19.13;CHAPTER 63. OPTIMAL OPERATION OF MULTICOMPONENT BATCH DISTILLATION - A COMPARATIVE STUDY USING CONVENTIONAL AND UNCONVENTIONAL COLUMNS;414
19.13.1;1. INTRODUCTION;414
19.13.2;2. COLUMN MODEL;415
19.13.3;3. CRITERION FOR SELECTING THE BEST COLUMN CONFIGURATION;416
19.13.4;4. EXAMPLE;416
19.13.5;5. DISCUSSION AND CONCLUSIONS;418
19.13.6;6. REFERENCES;419
19.14;CHAPTER 64. A NEW DESIGN METHOD OF SLIDING MODE CONTROL SYSTEMS BASED ON THE CONSTRUCTION OF LIAPUNOV FUNCTIONS;420
19.14.1;1. INTRODUCTION;420
19.14.2;2. CONNECTION BETWEEN SLIDING MODE CONTROL THEORY AND VARIABLE GRADIENT METHOD;420
19.14.3;3. NUMERICAL EXAMPLES;421
19.14.4;4. PILOT PLANT EXPERIMENTS;424
19.14.5;5. CONCLUSION;425
19.14.6;6. REFERENCES;425
19.15;CHAPTER 65. OPTIMAL AVERAGING LEVEL CONTROL FOR MULTI-TANK SYSTEMS;426
19.15.1;1. INTRODUCTION;426
19.15.2;2. OPTIMAL AVERAGING LEVEL CONTROL FOR TANKS IN SERIES;426
19.15.3;3. COMPARISON AMONG DIFFERENT OPTIMAL AVERAGING LEVEL CONTROL SCHEMES;428
19.15.4;4. APPLICATION IN AN INDUSTRIAL TEST PROBLEM;428
19.15.5;5. CONCLUSIONS;429
19.15.6;Appendix;430
19.15.7;References;431
19.16;CHAPTER 66. CONTROL OF COMPLEX DISTILLATION CONFIGURATIONS USING A NONLINEAR WAVE THEORY;432
19.16.1;1. Introduction;432
19.16.2;2. Profile Position Control of Distillation Column section;432
19.16.3;3. Control of Sidestream/Sidestripper configuration;434
19.16.4;4. Control of Complex Prefractionater/sidestream Column;436
19.16.5;5. Conclusion;437
19.16.6;6. Nomenclature;437
19.16.7;7. References;438
20;PART XIV: TUTORIAL PAPER;440
20.1;CHAPTER 67. STATISTICAL PROCESS CONTROL OF MULTIVARIATE PROCESSES;440
20.1.1;1. INTRODUCTION;440
20.1.2;2. MULTIVARIATE CHARTS FOR STATISTICAL QUALITY CONTROL;441
20.1.3;3. MULTIVARIATE STATISTICAL PROCESS CONTROL;444
20.1.4;4. SUMMARY;446
20.1.5;5. REFERENCES;447
21;PART XV: STATISTICAL CONTROL TECHNIQUES I;452
21.1;Chapter 68. Predictive Maintenance using PCA;452
21.1.1;1. INTRODUCTION;452
21.1.2;2. PCA MODELLING;452
21.1.3;3. SMART ALARM MONITORING;453
21.1.4;4. TOWARDS FAILURE PREDICTION;454
21.1.5;5. EXAMPLE APPLICATION;456
21.1.6;6. CONCLUSIONS;457
21.1.7;ACKNOWLEDGEMENT;457
21.1.8;REFERENCES;457
21.2;CHAPTER 69. AUTOASSOCIATIVE NEURAL NETWORKS IN BIOPROCESS CONDITION MONITORING;458
21.2.1;1. INTRODUCTION;458
21.2.2;2. BIOPROCESS DESCRIPTIONS;459
21.2.3;3. LINEAR PATTERN RECOGNITION;459
21.2.4;4. APPLICATIONS OF PCA TO BIOPROCESSES;459
21.2.5;5. AUTOASSOCIATIVE NEURAL NETWORKS;460
21.2.6;6. APPLICATIONS OF AUTOASSOCIATIVE NETWORKS TO BIOPROCESSES;460
21.2.7;7. CONCLUDING REMARKS;461
21.2.8;8. ACKNOWLEDGEMENTS;462
21.2.9;9. REFERENCES;462
21.3;CHAPTER 70. STATISTICAL PROCESS MONITORING AND DISTURBANCE ISOLATION IN MULTIVARIATE CONTINUOUS PROCESSES;464
21.3.1;1. INTRODUCTION;464
21.3.2;2. STATISTICAL MONITORING OF MULTIVARIABLE PROCESSES;464
21.3.3;PLANT DESCRIPTION;467
21.3.4;RESULTS;467
21.3.5;CONCLUSIONS;467
21.3.6;REFERENCES;468
21.4;Chapter 71. Detection of Unmodelled Disturbances Effects by Coherence Analysis;470
21.4.1;1 INTRODUCTION;470
21.4.2;2 COHERENCE ANALYSIS;470
21.4.3;3 DISTURBANCE MODELS;471
21.4.4;4 SPECIAL CASES;472
21.4.5;5 SIMULATION EXAMPLES;472
21.4.6;6 PROCESS EXAMPLE;473
21.4.7;7 SUMMARY;474
21.4.8;8 REFERENCES;474
22;PART XVI: MODELING AND SIMULATION IV;476
22.1;CHAPTER 72. ILL-CONDITIONEDNESS AND PROCESS DIRECTIONALITY - THE USE OF CONDITION NUMBERS IN PROCESS CONTROL;476
22.1.1;1. INTRODUCTION;476
22.1.2;2. THE SCALING DEPENDENCY OF THE CONDITION NUMBER;476
22.1.3;3. CONDITION NUMBERS AND CONTROL DIFFICULTIES;479
22.1.4;4. DISCUSSION AND CONCLUSIONS;480
22.1.5;5. ACKNOWLEDGMENTS;480
22.1.6;6. REFERENCES;480
22.2;CHAPTER 73. CONTROLLABILITY ANALYSIS OF SISO SYSTEMS;482
22.2.1;1 INTRODUCTION;482
22.2.2;2 LINEAR CONTROL THEORY;483
22.2.3;3 CONTROLLABILITY ANALYSIS;484
22.2.4;4 NEUTRALIZATION PROCESS;487
22.2.5;5 REFERENCES;487
22.2.6;APPENDIX. Scaling procedure;487
22.3;CHAPTER 74. PROCESS IDENTIFICATION USING DISCRETE WAVELET TRANSFORMS;488
22.3.1;1. INTRODUCTION;488
22.3.2;2. SOME ISSUES IN PROCESS IDENTIFICATION;488
22.3.3;3. WAVELET TRANSFORMS;489
22.3.4;4. PROCESS IDENTIFICATION USING WAVELETS;490
22.3.5;5. SIEVED PARAMETER ESTIMATION;492
22.3.6;6. ILLUSTRATIVE EXAMPLE;492
22.3.7;7. CONCLUSIONS;493
22.3.8;8. REFERENCES;493
22.4;CHAPTER 75. DETERMINING NECESSARY MODEL RESOLUTION IN MODEL BASED CONTROL OF DISTRIBUTED PARAMETER PROCESSES;494
22.4.1;1 INTRODUCTION;494
22.4.2;2 MODEL REDUCTION;494
22.4.3;3 FACTORS THAT INFLUENCES THE CHOICE OF N;495
22.4.4;4 CRITERION FOR CHOOSING N;496
22.4.5;5 SIMULATION STUDY;497
22.4.6;6 CONCLUSION;499
22.4.7;7 ACKNOWLEDGEMENT;499
22.4.8;REFERENCES;499
22.5;CHAPTER 76. LEAST SQUARES FORMULATION OF STATE ESTIMATION;500
22.5.1;ABSTRACT;500
22.5.2;1. INTRODUCTION;500
22.5.3;2. LEAST SQUARES FORMULATION OF STATE ESTIMATION;501
22.5.4;3. LINEAR STATE ESTIMATION;503
22.5.5;4. NONLINEAR ESTIMATION;504
22.5.6;References;505
23;PART XVII: NONLINEAR CONTROL AND OPTIMIZATION IV;506
23.1;CHAPTER 77. ELEMENTARY NONLINEAR DECOUPLING CONTROL OF COMPOSITION IN BINARY DISTILLATION COLUMNS;506
23.1.1;1. INTRODUCTION;506
23.1.2;2. ELEMENTARY NONLINEAR DECOUPLING (END);506
23.1.3;3. A DYNAMIC MODEL OF A BINARY DISTILLATION COLUMN;507
23.1.4;4. ILLUSTRATION OF END CONTROL OF A DISTILLATION COLUMN;507
23.1.5;5. CONCLUSION;508
23.1.6;6. ACKNOWLEDGEMENT;508
23.1.7;7. REFERENCES;508
23.2;CHAPTER 78. APPLICATION OF GEOMETRIC NONLINEAR CONTROL IN THE PROCESS INDUSTRIES - A CASE STUDY;512
23.2.1;1. Introduction;512
23.2.2;2. Model Reduction;514
23.2.3;3. State Observer;514
23.2.4;4. Experiments;515
23.2.5;5. Summary;517
23.2.6;6. Nomencalture;517
23.2.7;7. References;517
23.3;CHAPTER 79. GRADE TRANSITION CONTROL FOR AN IMPACT COPOLYMERIZATION REACTOR;518
23.3.1;1. INTRODUCTION;518
23.3.2;2. PROCESS DESCRIPTION;519
23.3.3;3. QUALITY & PROCESS MODELS;519
23.3.4;4. OPTIMIZATION PROBLEM;521
23.3.5;5. IMPLEMENTATION OF MODEL PREDICTIVE CONTROL;522
23.3.6;6. CONCLUSION;523
23.3.7;7. REFERENCES;523
23.4;CHAPTER 80. NONLINEAR ADAPTIVE CONTROL OF A CONTINUOUS POLYMERIZATION REACTOR;524
23.4.1;1. INTRODUCTION;524
23.4.2;2. MODELLING OF THE REACTOR;524
23.4.3;3. CONTROLLER DESIGN;526
23.4.4;4. SIMULATION RESULTS;528
23.4.5;5. CONCLUSION;529
23.4.6;6. REFERENCES;529
23.5;CHAPTER 81. EXTERNAL MODEL CONTROL OF A PERISTALTIC PUMP;530
23.5.1;1. INTRODUCTION;530
23.5.2;2. PROCESS MODEL;531
23.5.3;3. PROBLEM STATEMENT;531
23.5.4;4. DISTURBANCE REJECTION IN SMITH PREDICTOR;531
23.5.5;5. DEADBEAT DISTURBANCE PREDICTION;532
23.5.6;6. ALGEBRAIC DISTURBANCE REJECTION CONDITION;533
23.5.7;7. SIMULATION;534
23.5.8;8. CONCLUSIONS;534
23.5.9;ACKNOWLEDGEMENT;535
23.5.10;REFERENCES;535
23.5.11;A PROOF OF THEOREM 1;535
24;PART XVIII: STATISTICAL CONTROL TECHNIQUES II;536
24.1;CHAPTER 82. MULTIVARIATE STATISTICAL PROCESS CONTROL OF BATCH PROCESSES USING PCA AND PLS;536
24.1.1;INTRODUCTION;536
24.1.2;NATURE OF BATCH DATA;537
24.1.3;PROJECTION METHODS MULTI - WAY PCA AND PLS;537
24.1.4;EXAMPLE OF MPCA APPLICATION;538
24.1.5;CONCLUDING REMARKS;538
24.1.6;REFERENCES;539
24.2;CHAPTER 83. BIAS DETECTION AND ESTIMATION IN DYNAMIC DATA RECONCILIATION;542
24.2.1;1. INTRODUCTION;542
24.2.2;2. BACKGROUND;542
24.2.3;3. EXAMPLES;545
24.2.4;4. CONCLUSION;547
24.2.5;5. REFERENCES;547
24.3;CHAPTER 84. MONITORING AND FAULT DETECTION FOR AN HVAC CONTROL SYSTEM;548
24.3.1;1. INTRODUCTION;548
24.3.2;2. CONTROL SYSTEM PERFORMANCE;548
24.3.3;3. FAULT DETECTION STRATEGY;550
24.3.4;4. SIMULATION STUDY;550
24.3.5;CONCLUSIONS;551
24.3.6;REFERENCES;551
24.3.7;ACKNOWLEDGEMENTS;552
24.4;Chapter 85. Modelling of a continuous digester for process surveillance and prediction;554
24.4.1;1 INTRODUCTION;554
24.4.2;2 CONCEPTUAL MODEL;555
24.4.3;3 MATHEMATICAL MODEL;556
24.4.4;4 SIMULATION RESULTS;557
24.4.5;5 MODEL REDUCTION;558
24.4.6;6 CONCLUSIONS;559
24.4.7;7 ACKNOWLEDGMENTS;559
24.4.8;REFERENCES;559
25;AUTHOR INDEX;560



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.