Buch, Englisch, 802 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1396 g
Buch, Englisch, 802 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1396 g
Reihe: Springer Monographs in Mathematics
ISBN: 978-3-540-71896-3
Verlag: Springer Berlin Heidelberg
This book provides an extensive treatment of Potential Theory for sub-Laplacians on stratified Lie groups. It also provides a largely self-contained presentation of stratified Lie groups, and of their Lie algebra of left-invariant vector fields. The presentation is accessible to graduate students and requires no specialized knowledge in algebra or differential geometry.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Algebra Homologische Algebra
- Mathematik | Informatik Mathematik Mathematische Analysis Vektoranalysis, Physikalische Felder
- Mathematik | Informatik Mathematik Algebra Algebraische Strukturen, Gruppentheorie
- Mathematik | Informatik Mathematik Algebra Lineare und multilineare Algebra, Matrizentheorie
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
Weitere Infos & Material
Elements of Analysis of Stratified Groups.- Stratified Groups and Sub-Laplacians.- Abstract Lie Groups and Carnot Groups.- Carnot Groups of Step Two.- Examples of Carnot Groups.- The Fundamental Solution for a Sub-Laplacian and Applications.- Elements of Potential Theory for Sub-Laplacians.- Abstract Harmonic Spaces.- The ?-harmonic Space.- ?-subharmonic Functions.- Representation Theorems.- Maximum Principle on Unbounded Domains.- ?-capacity, ?-polar Sets and Applications.- ?-thinness and ?-fine Topology.- d-Hausdorff Measure and ?-capacity.- Further Topics on Carnot Groups.- Some Remarks on Free Lie Algebras.- More on the Campbell–Hausdorff Formula.- Families of Diffeomorphic Sub-Laplacians.- Lifting of Carnot Groups.- Groups of Heisenberg Type.- The Carathéodory–Chow–Rashevsky Theorem.- Taylor Formula on Homogeneous Carnot Groups.