Bonacich / Lu | Introduction to Mathematical Sociology | Buch | 978-0-691-14549-5 | sack.de

Buch, Englisch, 240 Seiten, Format (B × H): 184 mm x 267 mm, Gewicht: 575 g

Bonacich / Lu

Introduction to Mathematical Sociology


Erscheinungsjahr 2012
ISBN: 978-0-691-14549-5
Verlag: Princeton University Press

Buch, Englisch, 240 Seiten, Format (B × H): 184 mm x 267 mm, Gewicht: 575 g

ISBN: 978-0-691-14549-5
Verlag: Princeton University Press


Mathematical models and computer simulations of complex social systems have become everyday tools in sociology. Yet until now, students had no up-to-date textbook from which to learn these techniques. Introduction to Mathematical Sociology fills this gap, providing undergraduates with a comprehensive, self-contained primer on the mathematical tools and applications that sociologists use to understand social behavior. Phillip Bonacich and Philip Lu cover all the essential mathematics, including linear algebra, graph theory, set theory, game theory, and probability. They show how to apply these mathematical tools to demography; patterns of power, influence, and friendship in social networks; Markov chains; the evolution and stability of cooperation in human groups; chaotic and complex systems; and more. Introduction to Mathematical Sociology also features numerous exercises throughout, and is accompanied by easy-to-use Mathematica-based computer simulations that students can use to examine the effects of changing parameters on model behavior.Provides an up-to-date and self-contained introduction to mathematical sociology Explains essential mathematical tools and their applications Includes numerous exercises throughout Features easy-to-use computer simulations to help students master concepts

Bonacich / Lu Introduction to Mathematical Sociology jetzt bestellen!

Weitere Infos & Material


List of Figures ix

List of Tables xiii

Preface xv

Chapter 1. Introduction 1

Epidemics 2

Residential Segregation 6

Exercises 11

Chapter 2. Set Theory and Mathematical Truth 12

Boolean Algebra and Overlapping Groups 19

Truth and Falsity in Mathematics 21

Exercises 23

Chapter 3. Probability: Pure and Applied 25

Example: Gambling 28

Two or More Events: Conditional Probabilities 29

Two or More Events: Independence 30

A Counting Rule: Permutations and Combinations 31

The Binomial Distribution 32

Exercises 36

Chapter 4. Relations and Functions 38

Symmetry 41

Reflexivity 43

Transitivity 44

Weak Orders-Power and Hierarchy 45

Equivalence Relations 46

Structural Equivalence 47

Transitive Closure: The Spread of Rumors and Diseases 49

Exercises 51

Chapter 5. Networks and Graphs 53

Exercises 59

Chapter 6. Weak Ties 61

Bridges 61

The Strength of Weak Ties 62

Exercises 66

Chapter 7. Vectors and Matrices 67

Sociometric Matrices 69

Probability Matrices 71

The Matrix, Transposed 72

Exercises 72

Chapter 8. Adding and Multiplying Matrices 74

Multiplication of Matrices 75

Multiplication of Adjacency Matrices 77

Locating Cliques 79

Exercises 82

Chapter 9. Cliques and Other Groups 84

Blocks 86

Exercises 87

Chapter 10. Centrality 89

Degree Centrality 93

Graph Center 93

Closeness Centrality 94

Eigenvector Centrality 95

Betweenness Centrality 96

Centralization 99

Exercises 101

Chapter 11. Small-World Networks 102

Short Network Distances 103

Social Clustering 105

The Small-World Network Model 111

Exercises 116

Chapter 12. Scale-Free Networks 117

Power-Law Distribution 118

Preferential Attachment 121

Network Damage and Scale-Free Networks 129

Disease Spread in Scale-Free Networks 134

Exercises 136

Chapter 13. Balance Theory 137

Classic Balance Theory 137

Structural Balance 145

Exercises 148

The Markov Assumption: History Does Not Matter 156

Transition Matrices and Equilibrium 157

Exercises 158

Chapter 15. Demography 161

Mortality 162

Life Expectancy 167

Fertility 171

Population Projection 173

Exercises 179

Chapter 16. Evolutionary Game Theory 180

Iterated Prisoner?s Dilemma 184

Evolutionary Stability 185

Exercises 188

Chapter 17. Power and Cooperative Games 190

The Kernel 195

The Core 199

Exercises 200

Chapter 18. Complexity and Chaos 202

Chaos 202

Complexity 206

Exercises 212

Afterword: "Resistance Is Futile" 213

Bibliography 217

Index 219


Lu, Philip
hilip Lu is a PhD candidate in sociology at UCLA.

Bonacich, Phillip
Phillip Bonacich is professor emeritus of sociology at the University of California, Los Angeles.

Phillip Bonacich is professor emeritus of sociology at the University of California, Los Angeles. Philip Lu is a PhD candidate in sociology at UCLA.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.