Buch, Englisch, 230 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 760 g
Reihe: C.I.M.E. Summer Schools
Geometric Measure Theory and Minimal Surfaces
Nachdruck of the 1.. Auflage C.I.M.E., Auflage Cremonese, Roma, 1973. 2010
ISBN: 978-3-642-10969-0
Verlag: Springer
Lectures given at a Summer School of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Varenna (Como), Italy, August 24 - September 2, 1972
Buch, Englisch, 230 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 760 g
Reihe: C.I.M.E. Summer Schools
ISBN: 978-3-642-10969-0
Verlag: Springer
W.K. ALLARD: On the first variation of area and generalized mean curvature.- F.J. ALMGREN Jr.: Geometric measure theory and elliptic variational problems.- E. GIUSTI: Minimal surfaces with obstacles.- J. GUCKENHEIMER: Singularities in soap-bubble-like and soap-film-like surfaces.- D. KINDERLEHRER: The analyticity of the coincidence set in variational inequalities.- M. MIRANDA: Boundaries of Caciopoli sets in the calculus of variations.- L. PICCININI: De Giorgi’s measure and thin obstacles.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
W.K. ALLARD: On the first variation of area and generalized mean curvature.- F.J. ALMGREN Jr.: Geometric measure theory and elliptic variational problems.- E. GIUSTI: Minimal surfaces with obstacles.- J. GUCKENHEIMER: Singularities in soap-bubble-like and soap-film-like surfaces.- D. KINDERLEHRER: The analyticity of the coincidence set in variational inequalities.- M. MIRANDA: Boundaries of Caciopoli sets in the calculus of variations.- L. PICCININI: De Giorgi’s measure and thin obstacles.