E-Book, Englisch, 212 Seiten
Boiko Discontinuous Control Systems
1. Auflage 2008
ISBN: 978-0-8176-4753-7
Verlag: Birkhäuser Boston
Format: PDF
Kopierschutz: 1 - PDF Watermark
Frequency-Domain Analysis and Design
E-Book, Englisch, 212 Seiten
ISBN: 978-0-8176-4753-7
Verlag: Birkhäuser Boston
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book provides new insight on the problem of closed-loop performance and oscillations in discontinuous control systems, covering the class of systems that do not necessarily have low-pass filtering properties. The author provides a practical, yet rigorous and exact approach to analysis and design of discontinuous control systems via application of a novel frequency-domain tool: the locus of a perturbed relay system. Presented are a number of practical examples applying the theory to analysis and design of discontinuous control systems from various branches of engineering, including electro-mechanical systems, process control, and electronics. Discontinuous Control Systems is intended for readers who have knowledge of linear control theory and will be of interest to graduate students, researchers, and practicing engineers involved in systems analysis and design.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;9
3;The locus of a perturbed relay system theory;13
3.1;1 The servo problem in discontinuous control systems;14
3.1.1;1.1 Introduction;14
3.1.2;1.2 Fundamentals of frequency-domain analysis of periodic motions in nonlinear systems;16
3.1.3;1.3 Relay servo systems;21
3.1.4;1.4 Symmetric oscillations in relay servo systems: DF analysis;23
3.1.5;1.5 Asymmetric oscillations in relay servo systems: DF analysis;25
3.1.6;1.6 Slow signal propagation through a relay servo system;27
3.1.7;1.7 Conclusions;28
3.2;2 The locus of a perturbed relay system (LPRS) theory;29
3.2.1;2.1 Introduction to the LPRS;29
3.2.2;2.2 Computing the LPRS for a non-integrating plant;31
3.2.3;2.3 Computing the LPRS for an integrating plant;36
3.2.4;2.4 Computing the LPRS for a plant with a time delay;41
3.2.5;2.5 LPRS of first-order dynamics;43
3.2.6;2.6 LPRS of second-order dynamics;45
3.2.7;2.7 LPRS of first-order plus dead-time dynamics;48
3.2.8;2.8 Some properties of the LPRS;51
3.2.9;2.9 LPRS of nonlinear plants;53
3.2.10;2.10 Application of periodic signal mapping to computing the LPRS of some special nonlinear plants;58
3.2.11;2.11 Comparison of the LPRS with other methods of analysis of relay systems;62
3.2.12;2.12 An example of analysis of oscillations and transfer properties;63
3.2.13;2.13 Conclusions;64
3.3;3 Input-output analysis of relay servo systems;66
3.3.1;3.1 Slow and fast signal propagation through a relay servo system;66
3.3.2;3.2 Methodology of input-output analysis;72
3.3.3;3.3 Example of forced motions analysis with the use of the LPRS;72
3.3.4;3.4 Conclusions;74
3.4;4 Analysis of sliding modes in the frequency domain;75
3.4.1;4.1 Introduction to sliding mode control;75
3.4.2;4.2 Representation of a sliding mode system via the equivalent relay system;77
3.4.3;4.3 Analysis of motions in the equivalent relay system;81
3.4.4;4.4 The chattering phenomenon and its LPRS analysis;85
3.4.5;4.5 Reduced-order and non–reduced-order models of averaged motions in a sliding mode system and input- output analysis;93
3.4.6;4.6 On fractal dynamics in sliding-mode control;96
3.4.7;4.7 Examples of chattering and disturbance attenuation analysis;103
3.4.8;4.8 Conclusions;109
3.5;5 Performance analysis of second-order SM control algorithms;111
3.5.1;5.1 Introduction;111
3.5.2;5.2 Sub-optimal algorithm;112
3.5.3;5.3 Describing function analysis of chattering;113
3.5.4;5.4 Exact frequency-domain analysis of chattering;114
3.5.5;5.5 Describing function analysis of external signal propagation;116
3.5.6;5.6 Exact frequency-domain analysis of external signal propagation;120
3.5.7;5.7 Example of the analysis of sub-optimal algorithm performance;125
3.5.8;5.8 Conclusions;130
4;Applications of the locus of a perturbed relay system;131
4.1;6 Relay pneumatic servomechanism design;132
4.1.1;6.1 Relay pneumatic servomechanism dynamics and characteristics;132
4.1.2;6.2 LPRS analysis of uncompensated relay electro- pneumatic servomechanism;134
4.1.3;6.3 Compensator design in the relay electro-pneumatic servomechanism;135
4.1.4;6.4 Examples of compensator design in the relay electro- pneumatic servomechanism;139
4.1.5;6.5 Compensator design in the relay electro-pneumatic servomechanism with the use of the LPRS of a nonlinear plant;142
4.1.6;6.6 Conclusions;145
4.2;7 Relay feedback test identification and autotuning;146
4.2.1;7.1 The relay feedback test;146
4.2.2;7.2 The LPRS and asymmetric relay feedback test;147
4.2.3;7.3 Methodology of identification of the first-order plus dead- time process;148
4.2.4;7.4 Analysis of potential sources of inaccuracy;150
4.2.5;7.5 Performance analysis of the identification algorithm;152
4.2.6;7.6 Tuning algorithm;154
4.2.7;7.7 Conclusions;158
4.3;8 Performance analysis of the sliding mode– based analog differentiator and dynamical compensator;160
4.3.1;8.1 Transfer function "inversion” via sliding mode;160
4.3.2;8.2 Analysis of SM differentiator dynamics;161
4.3.3;8.3 Temperature sensor dynamics compensation via SM application;164
4.3.4;8.4 Analysis of the sliding mode compensator;167
4.3.5;8.5 An example of compensator design;169
4.3.6;8.6 Conclusions;172
4.4;9 Analysis of sliding mode observers;173
4.4.1;9.1 The SM observer as a relay servo system;173
4.4.2;9.2 SM observer performance analysis and characteristics;176
4.4.3;9.3 Example of SM observer performance analysis;178
4.4.4;9.4 Conclusions;181
4.5;10 Appendix;182
4.5.1;10.1 The LPRS derivation for a non-integrating linear part;182
4.5.2;10.2 Orbital stability of a system with a non-integrating linear part;186
4.5.3;10.3 The LPRS derivation for an integrating linear part;188
4.5.4;10.4 Orbital stability of a system with an integrating linear part;196
4.5.5;10.5 The LPRS derivation for a linear part with time delay;199
4.5.6;10.6 MATLAB code for LPRS computing;203
5;References;210
6;Index;216




