Bogomolov / Hassett / Tschinkel | Birational Geometry, Rational Curves, and Arithmetic | E-Book | sack.de
E-Book

E-Book, Englisch, 319 Seiten, eBook

Reihe: Simons Symposia

Bogomolov / Hassett / Tschinkel Birational Geometry, Rational Curves, and Arithmetic


1. Auflage 2013
ISBN: 978-1-4614-6482-2
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 319 Seiten, eBook

Reihe: Simons Symposia

ISBN: 978-1-4614-6482-2
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book features recent developments in a rapidly growing area at the interface of higher-dimensional birational geometry and arithmetic geometry.  It focuses on the geometry of spaces of rational curves, with an emphasis on applications to arithmetic questions.  Classically, arithmetic is the study of rational or integral solutions of diophantine equations and geometry is the study of lines and conics. From the modern standpoint, arithmetic is the study of rational and integral points on algebraic varieties over nonclosed fields. A major insight of the 20th century was that arithmetic properties of an algebraic variety are tightly linked to the geometry of rational curves on the variety and how they vary in families.This collection of solicited survey and research papers is intended to serve as an introduction for graduate students and researchers interested in entering the field, and as a source of reference for experts working on related problems. Topics that will be addressed include: birational properties such as rationality, unirationality, and rational connectedness, existence of rational curves in prescribed homology classes, cones of rational curves on rationally connected and Calabi-Yau varieties, as well as related questions within the framework of the Minimal Model Program.
Bogomolov / Hassett / Tschinkel Birational Geometry, Rational Curves, and Arithmetic jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Foreword.- Introduction.- A. Bertram and I. Coskun, The birational geometry of the Hilbert scheme of points on surfaces.- F. Bogomolov and Ch. Böhning, Isoclinism and stable cohomology of wreath products.- F. Bogomolov, I. Karzhemanov, and K. Kuyumzhiyan, Unirationality and existence of infinitely transitive models.- I. Cheltsov, L. Katzarkov, and V. Przyjalkowski, Birational geometry via moduli spaces.- O. Debarre, Curves of low degrees on projective varieties.- S. Kebekus, Uniruledness criteria and applications.- S. Kovács, The cone of curves of K3 surfaces revisited.- V. Lazic, Around and beyond the canonical class.- C. Liedtke, Algebraic surfaces in positive characteristic.- A. Varilly-Alvarado, Arithmetic of Del Pezzo surfaces.


F. Bogomolov is Professor at the Courant Institute, NYU. He is best known for his pioneering work on hyperkähler manifolds. B. Hassett is Professor and Chair of the department of Mathematics at Rice University. He published two books and around 50 papers on Algebraic and Arithmetic Geometry. Yuri Tschinkel is Professor at the Courant Institute, NYU and Director of the Mathematics and the Physical Sciences Division at the Simons Foundation.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.