Bogolyubov / Ter Haar | A Method for Studying Model Hamiltonians | E-Book | sack.de
E-Book

E-Book, Englisch, 180 Seiten, Web PDF

Bogolyubov / Ter Haar A Method for Studying Model Hamiltonians

A Minimax Principle for Problems in Statistical Physics
1. Auflage 2013
ISBN: 978-1-4831-4877-9
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

A Minimax Principle for Problems in Statistical Physics

E-Book, Englisch, 180 Seiten, Web PDF

ISBN: 978-1-4831-4877-9
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



A Method for Studying Model Hamiltonians: A Minimax Principle for Problems in Statistical Physics centers on methods for solving certain problems in statistical physics which contain four-fermion interaction. Organized into four chapters, this book begins with a presentation of the proof of the asymptotic relations for the many-time correlation functions. Chapter 2 details the construction of a proof of the generalized asymptotic relations for the many-time correlation averages. Chapter 3 explains the correlation functions for systems with four-fermion negative interaction. The last chapter shows the model systems with positive and negative interaction components.

Bogolyubov / Ter Haar A Method for Studying Model Hamiltonians jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;A Method for Studying Model Hamiltonians: A Minimax Principle for Problems in Statistical Physics;4
3;Copyright Page;5
4;Table of Contents;6
5;SERIES EDITOR'S PREFACE;8
6;PREFACE;10
7;INTRODUCTION;12
7.1;§ 1. General Remarks;12
7.2;§ 2. Remarks an Quasi-Averages;27
8;CHAPTER 1. PROOF OF THE ASYMPTOTIC RELATIONS FOR THE MANY-TIME CORRELATION FUNCTIONS;36
8.1;§ 1. General Treatment of the Problem. Some Preliminary Results and Formulation of the Problem;36
8.2;§ 2. Equations of Motion and Auxiliary Operator Inequalities;44
8.3;§ 3. Additional Inequalities;48
8.4;§ 4. Bounds for the Difference of the Single-time Averages;51
8.5;§ 5. Remark (I);58
8.6;§ 6. Proof of the Closeness of Averages Constructed on the Basis of Model and Trial Hamiltonians for "Normal" Ordering of the Operators in the Averages;61
8.7;§ 7. Proof of the Closeness of the Averages for Arbitrary Ordering of the Operators in the Averages;65
8.8;Remark (II);67
8.9;§ 8. Estimates of the Asymptotic Closeness of the Many-time Correlation Averages;68
9;CHAPTER 2. CONSTRUCTION OF A PROOF OF THE GENERALIZED ASYMPTOTIC RELATIONS FOR THE MANY-TIME CORRELATION AVERAGES;76
9.1;§ 1. Selection Rules and Calculation of the Averages;76
9.2;§ 2. Generalized Convergence;81
9.3;§ 3. Remark;85
9.4;§ 4. Proof of the Asymptotic Relations;87
9.5;§ 5. Remark on the Construction of Uniform Bounds;90
9.6;§ 6. Generalized Asymptotic Relations for the Green's Functions;93
9.7;§ 7. The Existence of Generalized Limits;96
10;CHAPTER 3. CORRELATION FUNCTIONS FOR SYSTEMS WITH FOURFERMION NEGATIVE INTERACTION;100
10.1;§ 1. Calculation of the Free Energy for Model Systems with Attraction;100
10.2;§ 2. Further Properties of the Expressions for the Free Energy;112
10.3;§ 3. Construction of Asymptotic Relations for the Free Energy;116
10.4;§ 4. On the Uniform Convergence with Respect to . of the Free Energy Function and on Bounds for the Quantities dv;122
10.5;§ 5. Properties of Partial Derivatives of the Free Energy Function. Theorem 3.III;125
10.6;§ 6. Rider to Theorem 3.Ill and Construction of an Auxiliary Inequality;128
10.7;§ 7. On the Difficulties of Introducing Quasi-averages;131
10.8;§ 8. A New Method of Introducing Quasi-averages;135
10.9;§ 9. The Question of the Choice of Sign for the Source-terms;141
10.10;§ 10. The Construction of Upper-bound Inequalities in the Case when C=0;142
11;CHAPTER 4. MODEL SYSTEMS WITH POSITIVE AND NEGATIVE INTERACTION COMPONENTS;148
11.1;§ 1. Hamiltonian with Negative Coupling Constants (Repulsive Interaction);148
11.2;§ 2. Features of the Asymptotic Relations for the Free Energies in the Case of Systems with Positive Interaction;152
11.3;§ 3. Bounds for the Free Energies and Correlation Functions;154
11.4;§ 4. Examination of an Auxiliary Problem;157
11.5;§ 5. Solution of the Question of Uniqueness;161
11.6;§ 6. Hamiltonians with Coupling Constants of Different Signs. The Minimax Principle;165
12;REFERENCES;176
13;INDEX;180



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.