Bode / Aoyama / Carreira | Science of Synthesis Knowledge Updates 2010 Vol. 4 | E-Book | sack.de
E-Book

E-Book, Englisch, 506 Seiten, PDF, Format (B × H): 170 mm x 240 mm

Reihe: Science of Synthesis

Bode / Aoyama / Carreira Science of Synthesis Knowledge Updates 2010 Vol. 4

E-Book, Englisch, 506 Seiten, PDF, Format (B × H): 170 mm x 240 mm

Reihe: Science of Synthesis

ISBN: 978-3-13-178681-4
Verlag: Thieme
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



The Science of Synthesis Editorial Board,together with the volume editors and authors, is constantly reviewing the whole field of synthetic organic chemistry as presented in Science of Synthesis and evaluating significant developments in synthetic methodology. Four annual volumes updating content across all categories ensure that you always have access to state-of-the-art synthetic methodology. // Content of this volume: Arene Organometallic Complexes of Chromium,
Molybdenum, and Tungsten, Silicon Compounds, Aluminum Compounds, Gallium Compounds, Barium Compounds, Lithium Compounds, Sodium Compounds, Pyridazines, Carboxylic Acids, Nitrones and Cyclic Analogue, Amino Compounds.
Bode / Aoyama / Carreira Science of Synthesis Knowledge Updates 2010 Vol. 4 jetzt bestellen!

Zielgruppe


Wissenschaftler

Weitere Infos & Material


1;Science of Synthesis: Knowledge Updates 2010/4;1
1.1;Title page;5
1.2;Imprint;7
1.3;Preface;8
1.4;Abstracts;10
1.5;Overview;20
1.6;Table of Contents;22
1.7;Volume 2: Compounds of Groups 7–3 (Mn···, Cr···, V···, Ti···, Sc···, La···, Ac···);36
1.7.1;2.4 Product Class 4: Arene Organometallic Complexes of Chromium, Molybdenum, and Tungsten;36
1.7.1.1;2.4.12 Arene Organometallic Complexes of Chromium, Molybdenum, and Tungsten;36
1.7.1.1.1;2.4.12.1 Method 1: Synthesis of Tricarbonylmetal–Arene Complexes by Arene Modification;36
1.7.1.1.1.1;2.4.12.1.1 Variation 1: Via Nucleophilic Substitution;36
1.7.1.1.1.2;2.4.12.1.2 Variation 2: Under Thermal Conditions; Chromium Migration;38
1.7.1.1.2;2.4.12.2 Method 2: Synthesis of Tricarbonylmetal–Arene Complexes by Side-Chain Modification;42
1.7.1.1.2.1;2.4.12.2.1 Variation 1: Via Cycloaddition;42
1.7.1.1.2.2;2.4.12.2.2 Variation 2: Via Radical Coupling;43
1.7.1.1.3;2.4.12.3 Method 3: Synthesis of Optically Active Arene Complexes;49
1.7.1.1.3.1;2.4.12.3.1 Variation 1: Diastereo- and Enantioselective Lithiation–Electrophilic Addition Reactions;50
1.7.1.1.3.2;2.4.12.3.2 Variation 2: Palladium-Catalyzed Reactions; Catalytic Asymmetric Synthesis;52
1.7.1.1.4;2.4.12.4 Method 4: (Arene)tricarbonylchromium(0) Complexes as Catalysts;54
1.7.1.1.5;2.4.12.5 Method 5: (Arene)tricarbonylchromium(0) Complexes as Chiral Ligands;55
1.8;Volume 4: Compounds of Group 15 (As, Sb, Bi) and Silicon Compounds;60
1.8.1;4.4 Product Class 4: Silicon Compounds;60
1.8.1.1;4.4.26.7 1-Diazo-1-silylalkanes;60
1.8.1.1.1;4.4.26.7.1 Synthesis of 1-Diazo-1-silylalkanes;60
1.8.1.1.1.1;4.4.26.7.1.1 Method 1: Synthesis of 1-Diazo-1-silylalkanes from Diazoacetates;60
1.8.1.1.1.2;4.4.26.7.1.2 Method 2: Reaction of Metalated Diazo(trimethylsilyl)methane with Electrophiles;62
1.8.1.1.1.2.1;4.4.26.7.1.2.1 Variation 1: Hydroxyalkylation of Diazo(trimethylsilyl)methane;62
1.8.1.1.1.2.2;4.4.26.7.1.2.2 Variation 2: Borylation of Diazo(trimethylsilyl)methane;63
1.8.1.1.1.2.3;4.4.26.7.1.2.3 Variation 3: Sulfidation of Diazo(trimethylsilyl)methane;63
1.8.1.1.1.2.4;4.4.26.7.1.2.4 Variation 4: Phosphinylation of Diazo(trimethylsilyl)methane;63
1.8.1.1.2;4.4.26.7.2 Applications of 1-Diazo-1-silylalkanes;64
1.8.1.1.2.1;4.4.26.7.2.1 Method 1: Diazo(trimethylsilyl)methane as a One-Carbon Unit;65
1.8.1.1.2.2;4.4.26.7.2.2 Method 2: Diazo(trimethylsilyl)methane as a C--N--N Unit;80
1.8.1.1.2.3;4.4.26.7.2.3 Method 3: Applications of Diazo(trimethylsilyl)methane in the Generation of Alkylidene Carbenes;83
1.8.1.1.2.4;4.4.26.7.2.4 Method 4: Applications of 2-Diazo-2-(trimethylsilyl)ethanols;92
1.8.1.1.2.5;4.4.26.7.2.5 Method 5: Applications of Diazo(silyl)acetates;95
1.8.1.1.2.6;4.4.26.7.2.6 Method 6: Applications of Diazo(silyl)methyl Ketones;99
1.9;Volume 7: Compounds of Groups 13 and 2 (Al, Ga, In, Tl, Be···Ba);104
1.9.1;7.1 Product Class 1: Aluminum Compounds;104
1.9.1.1;7.1.2.44 Aluminum Hydrides;104
1.9.1.1.1;7.1.2.44.1 Method 1: Amine– and Amide–Aluminate Complexes Prepared from Lithium Aluminum Hydride and Amines;104
1.9.1.1.2;7.1.2.44.2 Method 2: Sodium Bis(2-methoxyethoxy)aluminum Hydride;104
1.9.1.1.3;7.1.2.44.3 Method 3: Sodium Bis(2-methoxyethoxy)aluminum Hydride with Pyrrolidine and Potassium tert-Butoxide;105
1.9.1.1.4;7.1.2.44.4 Method 4: Diisobutylaluminum Hydride with Metal Alkoxides;107
1.9.1.1.5;7.1.2.44.5 Method 5: Diisobutylaluminum Hydride with Lithium Amides;107
1.9.1.1.6;7.1.2.44.6 Method 6: Diisobutylaluminum Hydride with Nickel Compounds;108
1.9.1.1.7;7.1.2.44.7 Method 7: Trivalent Aluminum Trihydride–Amine Complexes;111
1.9.1.2;7.1.3.18 Aluminum Halides;114
1.9.1.2.1;7.1.3.18.1 Method 1: Aluminum Halides with Amino Ligands;114
1.9.1.2.2;7.1.3.18.2 Method 2: Aluminum Halides with Chiral Alkoxide Ligands;116
1.9.1.2.3;7.1.3.18.3 Method 3: Aluminum Halides Coordinated with Thiols or Sulfides;123
1.9.1.2.4;7.1.3.18.4 Method 4: Aluminum Halides with Onium Salts;123
1.9.1.2.5;7.1.3.18.5 Method 5: Aluminum Bromide with Organosilicon Halides;124
1.9.1.2.6;7.1.3.18.6 Method 6: Aluminum Triiodide;125
1.9.1.3;7.1.9.11 Triorganoaluminum Compounds;128
1.9.1.3.1;7.1.9.11.1 Method 1: Applications in Addition to C--C Multiple Bonds;128
1.9.1.3.1.1;7.1.9.11.1.1 Variation 1: Carboalumination of Alkenes and Alkynes;128
1.9.1.3.1.2;7.1.9.11.1.2 Variation 2: Conjugate Addition;132
1.9.1.3.2;7.1.9.11.2 Method 2: Applications in Addition Reactions to Carbon--Heteroatom Multiple Bonds;137
1.9.1.3.2.1;7.1.9.11.2.1 Variation 1: Reaction with Carbonyl Substrates;137
1.9.1.3.3;7.1.9.11.3 Method 3: Applications in Activation of Inert Chemical Bonds;139
1.9.1.3.3.1;7.1.9.11.3.1 Variation 1: Alkylative Defluorination;139
1.9.1.3.3.2;7.1.9.11.3.2 Variation 2: Carbon--Hydrogen Bond Activation;142
1.9.2;7.2 Product Class 2: Gallium Compounds;148
1.9.2.1;7.2.8 Gallium Compounds;148
1.9.2.1.1;7.2.8.1 Method 1: Synthesis of Organogallium(III) Complexes Containing Gallium--Gallium Bonds;148
1.9.2.1.2;7.2.8.2 Method 2: Synthesis of Organogallium Complexes Containing a Bond between Gallium and a Transition Metal;149
1.9.2.1.3;7.2.8.3 Method 3: Synthesis of Organogallium(III) Halides;150
1.9.2.1.4;7.2.8.4 Method 4: Synthesis of Organogallium(III) Complexes Containing a Bond between Gallium and a Group 16 Element;151
1.9.2.1.5;7.2.8.5 Method 5: Synthesis of Organogallium(III) Complexes Containing a Bond between Gallium and a Group 15 Element;152
1.9.2.1.6;7.2.8.6 Method 6: Synthesis of Triorganogallium(III) Complexes;154
1.9.2.1.7;7.2.8.7 Method 7: Synthesis of Organogallium(I) Complexes;155
1.9.3;7.3 Product Class 3: Indium Compounds;160
1.9.3.1;7.3.1 Product Subclass 1: Allylic Indium Complexes;160
1.9.3.1.1;Synthesis of Product Subclass 1;161
1.9.3.1.1.1;7.3.1.1 Method 1: Addition of Indium Metal to Allylic Halides;161
1.9.3.1.1.1.1;7.3.1.1.1 Variation 1: In Ionic Liquids;161
1.9.3.1.1.1.2;7.3.1.1.2 Variation 2: Allylic Indium Complex from 4-Bromobuta-1,2-diene;161
1.9.3.1.1.1.3;7.3.1.1.3 Variation 3: Allylic Diindium Complex;162
1.9.3.1.1.2;7.3.1.2 Method 2: Reaction of Indium(I) Salts with Allylic Compounds;162
1.9.3.1.1.2.1;7.3.1.2.1 Variation 1: Reaction of Allylboronates with Catalytic Indium(I) Iodide;163
1.9.3.1.1.2.2;7.3.1.2.2 Variation 2: Electrochemical Processes;163
1.9.3.1.1.3;7.3.1.3 Method 3: Transmetalation from Allylic Stannanes to Indium(III) Chloride;164
1.9.3.1.1.4;7.3.1.4 Method 4: Transmetalation from p-Allylpalladium and p-Allylnickel Complexes;165
1.9.3.1.1.4.1;7.3.1.4.1 Variation 1: Transmetalation from p-Allylpalladium Complexes;165
1.9.3.1.1.4.2;7.3.1.4.2 Variation 2: Transmetalation from p-Allylnickel Complexes;167
1.9.3.1.1.5;7.3.1.5 Method 5: Hydroindation of 1,3-Dienes;168
1.9.3.1.2;Applications of Product Subclass 1 in Organic Synthesis;169
1.9.3.1.2.1;7.3.1.6 Method 6: Regioselective Allylation of Carbonyl Compounds;169
1.9.3.1.2.2;7.3.1.7 Method 7: Diastereoselective Allylation of Carbonyl Compounds;170
1.9.3.1.2.2.1;7.3.1.7.1 Variation 1: Allylation of Aldehydes Bearing Coordinative Substituents;171
1.9.3.1.2.2.2;7.3.1.7.2 Variation 2: Allylation with Allylindium Bearing Coordinative Substituents;172
1.9.3.1.2.3;7.3.1.8 Method 8: Enantioselective Allylation of Carbonyl Compounds;173
1.9.3.1.2.4;7.3.1.9 Method 9: Allylation of Imines;174
1.9.3.1.2.4.1;7.3.1.9.1 Variation 1: Diastereoselective Allylation;174
1.9.3.1.2.4.2;7.3.1.9.2 Variation 2: Enantioselective Allylation;174
1.9.3.1.2.5;7.3.1.10 Method 10: Carboindation of Carbon--Carbon Multiple Bonds;175
1.9.3.1.2.6;7.3.1.11 Method 11: Cross-Coupling Reaction;177
1.9.3.1.2.7;7.3.1.12 Method 12: Photolytic Radical Reaction;177
1.9.3.2;7.3.2 Product Subclass 2: Propargylic/Allenylic Indium Complexes;178
1.9.3.2.1;Synthesis of Product Subclass 2;178
1.9.3.2.1.1;7.3.2.1 Method 1: Addition of Indium Metal to Propargylic Halides;178
1.9.3.2.1.2;7.3.2.2 Method 2: Insertion of Indium(I) Halide into Propargylic Halides;179
1.9.3.2.1.3;7.3.2.3 Method 3: Transmetalation from Organopalladium Complexes;179
1.9.3.2.2;Applications of Product Subclass 2 in Organic Synthesis;180
1.9.3.2.2.1;7.3.2.4 Method 4: Addition to Carbonyl and Imine Compounds;180
1.9.3.2.2.2;7.3.2.5 Method 5: Coupling Reaction;181
1.9.3.3;7.3.3 Product Subclass 3: Indium Enolates;182
1.9.3.3.1;Synthesis of Product Subclass 3;182
1.9.3.3.1.1;7.3.3.1 Method 1: Insertion of Indium Metal or Indium(I) Halides into a-Halo Esters;182
1.9.3.3.2;Applications of Product Subclass 3 in Organic Synthesis;182
1.9.3.3.2.1;7.3.3.2 Method 2: Reformatsky-Type Reactions;182
1.9.3.3.2.2;7.3.3.3 Method 3: 1,4-Addition;183
1.9.3.4;7.3.4 Product Subclass 4: Arylindium(III) Complexes;183
1.9.3.4.1;Synthesis of Product Subclass 4;183
1.9.3.4.1.1;7.3.4.1 Method 1: Transmetalation;183
1.9.3.4.1.2;7.3.4.2 Method 2: Insertion of Indium Metal into Aryl Iodides;183
1.9.3.4.2;Applications of Product Subclass 4 in Organic Synthesis;184
1.9.3.4.2.1;7.3.4.3 Method 3: Nucleophilic Substitution;184
1.9.3.4.2.2;7.3.4.4 Method 4: Cross-Coupling Reactions;185
1.9.3.4.2.2.1;7.3.4.4.1 Variation 1: Palladium-Catalyzed Cross-Coupling Reactions;185
1.9.3.4.2.2.2;7.3.4.4.2 Variation 2: Copper-Catalyzed Three-Component Coupling Reactions;186
1.9.3.5;7.3.5 Product Subclass 5: Alkyl- and Alkenylindium(III) Complexes;187
1.9.3.5.1;Synthesis of Product Subclass 5;187
1.9.3.5.1.1;7.3.5.1 Method 1: Transmetalation;187
1.9.3.5.1.2;7.3.5.2 Method 2: Alkenylindium via Hydroindation;187
1.9.3.5.2;Applications of Product Subclass 5 in Organic Synthesis;187
1.9.3.5.2.1;7.3.5.3 Method 3: Allylic Substitution;187
1.9.3.5.2.2;7.3.5.4 Method 4: Cross-Coupling Reactions;188
1.9.3.5.2.2.1;7.3.5.4.1 Variation 1: Cross Coupling with Halides or Pseudohalides;188
1.9.3.5.2.2.2;7.3.5.4.2 Variation 2: Carbonylative Cross-Coupling Reaction;189
1.9.3.5.2.2.3;7.3.5.4.3 Variation 3: Radical Coupling Reaction;189
1.9.3.6;7.3.6 Product Subclass 6: Tetraorganoindates;190
1.9.3.6.1;Synthesis of Product Subclass 6;190
1.9.3.6.1.1;7.3.6.1 Method 1: Reaction of Indium Halides with Organolithium or Grignard Reagents;190
1.9.3.6.2;Applications of Product Subclass 6 in Organic Synthesis;190
1.9.3.6.2.1;7.3.6.2 Method 2: Allylic Substitution;190
1.9.3.6.2.2;7.3.6.3 Method 3: Ring Opening of Epoxides;191
1.9.3.6.2.3;7.3.6.4 Method 4: Cross-Coupling Reactions;191
1.9.3.7;7.3.7 Product Subclass 7: Indium(III) Chloride;192
1.9.3.7.1;Applications of Product Subclass 7 in Organic Synthesis;193
1.9.3.7.1.1;7.3.7.1 Method 1: Allylation and Alkylation;193
1.9.3.7.1.1.1;7.3.7.1.1 Variation 1: Allylation and Alkenylation with Organosilanes;193
1.9.3.7.1.1.2;7.3.7.1.2 Variation 2: Sakurai–Hosomi-Type Allylation;193
1.9.3.7.1.1.3;7.3.7.1.3 Variation 3: Alkylation of 1,3-Dicarbonyl Compounds;194
1.9.3.7.1.2;7.3.7.2 Method 2: Cycloaddition Reactions;195
1.9.3.7.1.2.1;7.3.7.2.1 Variation 1: Enantioselective Diels–Alder Reaction;195
1.9.3.7.1.2.2;7.3.7.2.2 Variation 2: Ketone–Ene Reaction;195
1.9.3.7.1.3;7.3.7.3 Method 3: Prins-Type Reactions;195
1.9.3.7.1.4;7.3.7.4 Method 4: Mukaiyama Aldol Reaction;196
1.9.3.7.1.5;7.3.7.5 Method 5: Mannich-Type Reaction;197
1.9.3.7.1.6;7.3.7.6 Method 6: Friedel–Crafts Reaction;197
1.9.3.7.1.7;7.3.7.7 Method 7: Intramolecular Cyclization;198
1.9.3.7.1.8;7.3.7.8 Method 8: Reduction;199
1.9.3.7.1.9;7.3.7.9 Method 9: Chlorination of Alcohols;200
1.9.3.8;7.3.8 Product Subclass 8: Indium(III) Bromide;200
1.9.3.8.1;Applications of Product Subclass 8 in Organic Synthesis;201
1.9.3.8.1.1;7.3.8.1 Method 1: Reductive Aldol Reaction;201
1.9.3.8.1.2;7.3.8.2 Method 2: Friedel–Crafts Acylation of Arenes;201
1.9.3.8.1.3;7.3.8.3 Method 3: Activation of Silyl Enolates;202
1.9.3.8.1.3.1;7.3.8.3.1 Variation 1: Addition/Coupling with Alkynes;202
1.9.3.8.1.3.2;7.3.8.3.2 Variation 2: Alkylation by Alkyl Chlorides;202
1.9.3.8.1.4;7.3.8.4 Method 4: Carbonyl Alkynylation;203
1.9.3.8.1.5;7.3.8.5 Method 5: Intramolecular Cyclization;203
1.9.3.8.1.5.1;7.3.8.5.1 Variation 1: Indole Synthesis;203
1.9.3.8.1.5.2;7.3.8.5.2 Variation 2: Intramolecular Michael Addition;204
1.9.3.9;7.3.9 Product Subclass 9: Indium(III) Iodide;204
1.9.3.9.1;Synthesis of Product Subclass 9;205
1.9.3.9.1.1;7.3.9.1 Method 1: Reaction of Indium Metal with Iodine;205
1.9.3.9.2;Applications of Product Subclass 9 in Organic Synthesis;205
1.9.3.9.2.1;7.3.9.2 Method 2: a-Alkylation of Carbonyl Compounds;205
1.9.3.9.2.2;7.3.9.3 Method 3: Strecker Reaction;206
1.9.3.9.2.3;7.3.9.4 Method 4: Transesterification;206
1.9.3.9.2.4;7.3.9.5 Method 5: Allylation of Ketones;207
1.9.3.9.2.5;7.3.9.6 Method 6: Ring Opening of Aziridines;207
1.9.3.10;7.3.10 Product Subclass 10: Indium(III) Trifluoromethanesulfonate;208
1.9.3.10.1;Applications of Product Subclass 10 in Organic Synthesis;208
1.9.3.10.1.1;7.3.10.1 Method 1: Allylation;208
1.9.3.10.1.1.1;7.3.10.1.1 Variation 1: Allylation of Ketones and Imines;208
1.9.3.10.1.1.2;7.3.10.1.2 Variation 2: Enantioselective Allylation;209
1.9.3.10.1.2;7.3.10.2 Method 2: Reaction of Alkynes;210
1.9.3.10.1.2.1;7.3.10.2.1 Variation 1: Addition of ß-Dicarbonyl Compounds to Unactivated Alkynes;210
1.9.3.10.1.2.2;7.3.10.2.2 Variation 2: Asymmetric Addition of Enamines to Alkynes;211
1.9.3.10.1.2.3;7.3.10.2.3 Variation 3: Conia-Ene Reaction;212
1.9.3.10.1.3;7.3.10.3 Method 3: Rearrangement;213
1.9.3.10.1.4;7.3.10.4 Method 4: Diels–Alder Reaction;213
1.9.3.10.1.5;7.3.10.5 Method 5: Retro-Claisen Condensation;214
1.9.3.10.1.6;7.3.10.6 Method 6: Cycloaddition;215
1.9.3.10.1.7;7.3.10.7 Method 7: Carbonyl-Ene Reaction;215
1.9.3.11;7.3.11 Product Subclass 11: Indium(III) Trifluoromethanesulfonimide;216
1.9.3.11.1;Applications of Product Subclass 11 in Organic Synthesis;216
1.9.3.11.1.1;7.3.11.1 Method 1: Addition of 1,3-Dicarbonyl Compounds to Alkynes;216
1.9.3.11.1.2;7.3.11.2 Method 2: Alkylation of Pyrroles;217
1.9.3.12;7.3.12 Product Subclass 12: Indium(I) Iodide;218
1.9.3.12.1;Synthesis of Product Subclass 12;218
1.9.3.12.1.1;7.3.12.1 Method 1: Reaction of Indium Metal with Iodine;218
1.9.3.12.2;Applications of Product Subclass 12 in Organic Synthesis;218
1.9.3.12.2.1;7.3.12.2 Method 2: Cleavage of Diselenides and Disulfides;218
1.9.3.12.2.1.1;7.3.12.2.1 Variation 1: Synthesis of Unsymmetrical Diorganyl Selenides and Related Compounds;218
1.9.3.12.2.1.2;7.3.12.2.2 Variation 2: Synthesis of Vinyl Selenides;219
1.9.3.12.2.1.3;7.3.12.2.3 Variation 3: Aziridine Ring Opening;219
1.9.3.13;7.3.13 Product Subclass 13: Zerovalent Indium;219
1.9.3.13.1;Applications of Product Subclass 13 in Organic Synthesis;220
1.9.3.13.1.1;7.3.13.1 Method 1: Reduction;220
1.9.3.13.1.1.1;7.3.13.1.1 Variation 1: Reduction of Conjugated Alkenes;220
1.9.3.13.1.1.2;7.3.13.1.2 Variation 2: Reduction of Nitro and N-Oxide Groups and Hydroxylamines;220
1.9.3.13.1.2;7.3.13.2 Method 2: Radical Reaction;221
1.9.3.13.1.2.1;7.3.13.2.1 Variation 1: Intermolecular Reaction;221
1.9.3.13.1.2.2;7.3.13.2.2 Variation 2: Intramolecular Reaction;221
1.9.3.13.1.3;7.3.13.3 Method 3: Elimination;224
1.9.4;7.9 Product Class 9: Barium Compounds;230
1.9.4.1;7.9.5 Barium Compounds;230
1.9.4.1.1;7.9.5.1 Applications of Barium in Organic Synthesis;230
1.9.4.1.1.1;7.9.5.1.1 Method 1: Reactions of Propargylic Bromides with Carbonyl Compounds;230
1.9.4.1.1.2;7.9.5.1.2 Method 2: Reactions of Propargylic Bromides with Imines;231
1.9.4.1.1.3;7.9.5.1.3 Method 3: Reactions of a-Chloro Ketones with Aldehydes;232
1.9.4.1.2;7.9.5.2 Applications of Barium Hydride in Organic Synthesis;233
1.9.4.1.2.1;7.9.5.2.1 Method 1: Homocoupling of Enones;233
1.9.4.1.2.1.1;7.9.5.2.1.1 Variation 1: Cross Coupling of Enones;234
1.9.4.1.3;7.9.5.3 Applications of Barium Alkoxides in Organic Synthesis;235
1.9.4.1.3.1;7.9.5.3.1 Method 1: Reactions of Ketones with Aldehydes;235
1.9.4.1.3.1.1;7.9.5.3.1.1 Variation 1: Reactions of Ketones with Enones;236
1.9.4.1.3.2;7.9.5.3.2 Method 2: Aldol Reactions;237
1.9.4.1.3.3;7.9.5.3.3 Method 3: Mannich-Type Reactions;239
1.9.4.1.3.4;7.9.5.3.4 Method 4: Diels–Alder-Type Reactions;241
1.10;Volume 8: Compounds of Group 1 (Li···Cs);244
1.10.1;8.1 Product Class 1: Lithium Compounds;244
1.10.1.1;8.1.28 The Catalytic Use of Lithium Compounds for Bond Formation;244
1.10.1.1.1;8.1.28.1 Lithium Acetate and Related Compounds as Lewis Base Catalysts;244
1.10.1.1.1.1;8.1.28.1.1 Method 1: Catalytic C--C Bond Formation of Silyl Enolates;244
1.10.1.1.2;8.1.28.2 Use of Lithium Aryloxides as Brønsted Base Catalysts;246
1.10.1.1.2.1;8.1.28.2.1 Method 1: Catalytic C--C Bond Formation via In Situ Enolate Generation;246
1.10.1.1.3;8.1.28.3 Use of Lithium Binaphtholates as Chiral Catalysts;248
1.10.1.1.3.1;8.1.28.3.1 Method 1: Catalytic Asymmetric Cyanation Reactions;248
1.10.1.1.3.2;8.1.28.3.2 Method 2: Catalytic Asymmetric Mannich-Type Reactions;250
1.10.1.1.3.3;8.1.28.3.3 Method 3: Catalytic Asymmetric 1,4-Addition Reactions;251
1.10.1.1.3.4;8.1.28.3.4 Method 4: Catalytic Asymmetric Synthesis of 2,2-Disubstituted Epoxides and Oxetanes;254
1.10.1.1.3.5;8.1.28.3.5 Method 5: Catalytic Asymmetric Aldol Reaction;256
1.10.2;8.2 Product Class 2: Sodium Compounds;258
1.10.2.1;8.2.16 The Catalytic Use of Sodium Compounds for Bond Formation;258
1.10.2.1.1;8.2.16.1 Method 1: Lewis Base Catalysis;259
1.10.2.1.1.1;8.2.16.1.1 Variation 1: Sodium Methoxide Catalysis of the Mukaiyama Aldol Reaction;259
1.10.2.1.1.2;8.2.16.1.2 Variation 2: Sodium Acetate Catalysis of Michael Reactions;259
1.10.2.1.1.3;8.2.16.1.3 Variation 3: Sodium–Phosphine Oxide for the Activation of a Trimethylsilyl Enolate;260
1.10.2.1.1.4;8.2.16.1.4 Variation 4: Sodium Formate for the Synthesis of Trimethysilyl-Protected (Trichloromethyl)carbinols;261
1.10.2.1.1.5;8.2.16.1.5 Variation 5: Sodium Salt of L-Phenylglycine for the Cyanosilylation of Ketones;262
1.10.2.1.2;8.2.16.2 Method 2: Lewis Acid Catalysis;262
1.10.2.1.2.1;8.2.16.2.1 Variation 1: Use of Sodium Tetrafluoroborate;263
1.10.2.1.3;8.2.16.3 Method 3: Acid–Base Catalysis;263
1.10.2.1.3.1;8.2.16.3.1 Variation 1: Sodium Tetramethoxyborate for Michael Reaction;263
1.10.2.1.3.2;8.2.16.3.2 Variation 2: Lanthanum Trisodium Tris(binaphtholate) Complex for Michael Reaction;264
1.10.2.1.3.3;8.2.16.3.3 Variation 3: Gallium Sodium Bis(binaphtholate)/Sodium tert-Butoxide Combination for Michael Reaction;265
1.10.2.1.3.4;8.2.16.3.4 Variation 4: Aluminum Lithium Bis(binaphtholate)/Sodium tert-Butoxide for Michael Reaction;266
1.10.2.1.3.5;8.2.16.3.5 Variation 5: Samarium Trisodium Tris(binaphtholate) for Michael Reaction–Protonation;267
1.10.2.1.3.6;8.2.16.3.6 Variation 6: Lanthanum Trilithium Tris(biphenoxide)/Sodium Iodide for Cyclopropanation of Enones;268
1.10.2.1.3.7;8.2.16.3.7 Variation 7: Neodymium/Sodium–Amidophenol Complex for anti-Selective Henry Reaction;269
1.11;Volume 16: Six-Membered Hetarenes with Two Identical Heteroatoms;272
1.11.1;16.8 Product Class 8: Pyridazines;272
1.11.1.1;16.8.5 Pyridazines;272
1.11.1.1.1;16.8.5.1 Synthesis by Ring-Closure Reactions;274
1.11.1.1.1.1;16.8.5.1.1 By Formation of Two N--C Bonds;274
1.11.1.1.1.1.1;16.8.5.1.1.1 Fragments C--C--C--C and N--N;274
1.11.1.1.1.1.1.1;16.8.5.1.1.1.1 Method 1: Condensation of 1,4-Diketones with Hydrazine;274
1.11.1.1.1.1.1.2;16.8.5.1.1.1.2 Method 2: Condensation of 4-Oxoalkanoic Acid Derivatives with Hydrazine;276
1.11.1.1.1.1.1.3;16.8.5.1.1.1.3 Method 3: Condensation of Maleic Anhydrides with Hydrazine;276
1.11.1.1.1.1.1.4;16.8.5.1.1.1.4 Method 4: Condensation of 4-Oxo Acids with Hydrazine, with Subsequent Oxidation by Copper(II) Salts;277
1.11.1.1.1.1.1.5;16.8.5.1.1.1.5 Method 5: Isomerization of Alk-2-yne-1,4-diols Followed by Condensation with Hydrazine;278
1.11.1.1.1.1.1.6;16.8.5.1.1.1.6 Method 6: Reaction of a-Oxo Acids with Aryl Methyl Ketones To Give 4-Oxobut-2-enoic Acids, Followed by Condensation with Hydrazine;279
1.11.1.1.1.1.1.7;16.8.5.1.1.1.7 Method 7: Synthesis from Methyl 3,3,3-Trifluoro-2-oxopropanoate and Hydrazine;279
1.11.1.1.1.1.1.8;16.8.5.1.1.1.8 Method 8: Synthesis from Pyran-2-one and Hydrazine, with Subsequent Oxidation;280
1.11.1.1.1.2;16.8.5.1.2 By Formation of One N--C and One C--C Bond;281
1.11.1.1.1.2.1;16.8.5.1.2.1 Fragments N--N--C--C and C--C;281
1.11.1.1.1.2.1.1;16.8.5.1.2.1.1 Method 1: Michael-Type Addition/Heterocyclization of Active Methylene Compounds to 1,2-Diazabuta-1,3-dienes;281
1.11.1.1.1.2.1.2;16.8.5.1.2.1.2 Method 2: Synthesis from Sodium 1,2-Dihydroxyethane-1,2-disulfonate;283
1.11.1.1.2;16.8.5.2 Synthesis by Ring Transformation;284
1.11.1.1.2.1;16.8.5.2.1 Formal Exchange of Ring Members with Retention of Ring Size;284
1.11.1.1.2.1.1;16.8.5.2.1.1 Method 1: Diels–Alder Reaction of 1,2,4,5-Tetrazine and Ketene Acetals;284
1.11.1.1.2.1.2;16.8.5.2.1.2 Method 2: Diels–Alder Reaction of 1,2,4,5-Tetrazines and Ketones;285
1.11.1.1.2.1.3;16.8.5.2.1.3 Method 3: Diels–Alder Reaction of 1,2,4,5-Tetrazines and Alkynylboronic Esters;286
1.11.1.1.2.1.4;16.8.5.2.1.4 Method 4: Diels–Alder Reaction of Nitrogen Heterocycle Substituted Tetrazines and Alkynyltrifluoroborates;287
1.11.1.1.2.1.5;16.8.5.2.1.5 Method 5: Diels–Alder Reaction of 1,2,4,5-Tetrazines and Enol Ethers or Alkenes;289
1.11.1.1.3;16.8.5.3 Synthesis by Substituent Modification;291
1.11.1.1.3.1;16.8.5.3.1 Substitution of Existing Substitutents;291
1.11.1.1.3.1.1;16.8.5.3.1.1 Method 1: Synthesis from Chloropyridazines or Chloropyridazinones via Palladium-Mediated Suzuki Coupling;291
1.11.1.1.3.1.2;16.8.5.3.1.2 Method 2: Synthesis from Chloropyridazines or Chloropyridazin-3(2H)-ones via Palladium-Mediated Stille Coupling;299
1.11.1.1.3.1.3;16.8.5.3.1.3 Method 3: Synthesis from Chloropyridazines or Chloropyridazin-3(2H)-ones via Palladium-Mediated Sonogashira Coupling;301
1.11.1.1.3.1.4;16.8.5.3.1.4 Method 4: Synthesis from Halopyridazines or Halopyridazin-3(2H)-ones via Palladium-Mediated Heck Coupling;303
1.11.1.1.3.1.5;16.8.5.3.1.5 Method 5: Palladium-Catalyzed Cross-Coupling Reactions of Pyridazine N-Oxides with Aryl Chlorides, Bromides, and Iodides;303
1.11.1.1.3.1.6;16.8.5.3.1.6 Method 6: Other Nucleophilic Substitutions;305
1.12;Volume 20: Three Carbon--Heteroatom Bonds: Acid Halides; Carboxylic Acids and Acid Salts; Esters, and Lactones; Peroxy Acids and R(CO)OX Compounds; R(CO)X, X = S, Se, Te;312
1.12.1;20.2 Product Class 2: Carboxylic Acids;312
1.12.1.1;20.2.1.8.13 Synthesis with Retention of the Functional Group (Update 1);312
1.12.1.1.1;20.2.1.8.13.1 Method 1: Synthesis by Conjugate Addition;312
1.12.1.1.1.1;20.2.1.8.13.1.1 Variation 1: Conjugate Addition of Organometallic Reagents;312
1.12.1.1.1.2;20.2.1.8.13.1.2 Variation 2: Conjugate Addition of Thiols;313
1.12.1.1.1.3;20.2.1.8.13.1.3 Variation 3: Asymmetric Conjugate Addition;314
1.12.1.2;20.2.1.8.14 Synthesis with Retention of the Functional Group (Update 2);318
1.12.1.2.1;20.2.1.8.14.1 Synthesis by Alkylation or Arylation;318
1.12.1.2.1.1;20.2.1.8.14.1.1 Method 1: Direct a-Alkylation or -Arylation of Carboxylic Acids;318
1.12.1.2.1.2;20.2.1.8.14.1.2 Method 2: Diastereoselective Alkylations;319
1.12.1.2.1.3;20.2.1.8.14.1.3 Method 3: Alkylation of Alkenoic Acids;320
1.12.1.2.1.4;20.2.1.8.14.1.4 Method 4: Synthesis via Carboxylic Acid Derivatives;321
1.12.1.2.1.4.1;20.2.1.8.14.1.4.1 Variation 1: Alkylation and Arylation of Esters;322
1.12.1.2.1.4.2;20.2.1.8.14.1.4.2 Variation 2: Chiral Auxiliaries: Tertiary Stereocenters;324
1.12.1.2.1.4.3;20.2.1.8.14.1.4.3 Variation 3: Chiral Auxiliaries: Quaternary Stereocenters;328
1.13;Volume 21: Three Carbon--Heteroatom Bonds: Amides and Derivatives; Peptides; Lactams;336
1.13.1;21.15 Product Class 15: Polyamides;336
1.13.1.1;21.15.1 Product Subclass 1: Aliphatic Polyamides;336
1.13.1.1.1;21.15.1.1 Synthesis of Product Subclass 1;336
1.13.1.1.1.1;21.15.1.1.1 Method 1: Interfacial Polymerization;336
1.13.1.1.1.2;21.15.1.1.2 Method 2: Ring-Opening Polymerization;337
1.13.1.1.1.3;21.15.1.1.3 Method 3: Melt Polymerization;338
1.13.1.2;21.15.2 Product Subclass 2: Aliphatic–Aromatic Polyamides;338
1.13.1.2.1;21.15.2.1 Synthesis of Product Subclass 2;338
1.13.1.2.1.1;21.15.2.1.1 Method 1: Use of Diacid Dichlorides;338
1.13.1.2.1.2;21.15.2.1.2 Method 2: Melt Polymerization;339
1.13.1.3;21.15.3 Product Subclass 3: Aromatic Polyamides;340
1.13.1.3.1;21.15.3.1 Synthesis of Product Subclass 3;340
1.13.1.3.1.1;21.15.3.1.1 Method 1: Use of Diacid Dichlorides;340
1.13.1.3.1.2;21.15.3.1.2 Method 2: Use of Active Esters and Amides;341
1.13.1.3.1.3;21.15.3.1.3 Method 3: Direct Polymerization;342
1.13.1.3.1.3.1;21.15.3.1.3.1 Variation 1: Use of Condensation Agents;343
1.13.1.3.1.3.2;21.15.3.1.3.2 Variation 2: By Reaction-Induced Crystallization;344
1.13.1.3.1.3.3;21.15.3.1.3.3 Variation 3: Melt or Solid-State Polymerization;345
1.13.1.3.1.4;21.15.3.1.4 Method 4: Transition-Metal-Catalyzed Polymerization;347
1.13.1.3.1.5;21.15.3.1.5 Method 5: Condensative Chain-Growth Polymerization;348
1.13.1.3.1.5.1;21.15.3.1.5.1 Variation 1: Aromatic Polyamides with Low Polydispersity;348
1.13.1.3.1.5.2;21.15.3.1.5.2 Variation 2: Block Copolyamides;349
1.13.1.3.1.6;21.15.3.1.6 Method 6: Hyperbranched Polymers Using ABx Monomers;352
1.13.1.3.1.7;21.15.3.1.7 Method 7: Dendrimers by Divergent and Convergent Methods;353
1.14;Volume 27: Heteroatom Analogues of Aldehydes and Ketones;360
1.14.1;27.13 Product Class 13: Nitrones and Cyclic Analogues;360
1.14.1.1;27.13.3 Nitrones and Cyclic Analogues;360
1.14.1.1.1;27.13.3.1 Synthesis of Nitrones and Cyclic Analogues;360
1.14.1.1.1.1;27.13.3.1.1 Method 1: Synthesis by Oxidation;360
1.14.1.1.1.1.1;27.13.3.1.1.1 Variation 1: Of Secondary Amines;360
1.14.1.1.1.1.2;27.13.3.1.1.2 Variation 2: Of Imines;368
1.14.1.1.1.1.3;27.13.3.1.1.3 Variation 3: Of Hydroxylamines;371
1.14.1.1.1.2;27.13.3.1.2 Method 2: Synthesis by Condensation of N-Alkylhydroxylamines;375
1.14.1.1.1.2.1;27.13.3.1.2.1 Variation 1: With Aldehydes;375
1.14.1.1.1.2.2;27.13.3.1.2.2 Variation 2: With Ketones;380
1.14.1.1.1.3;27.13.3.1.3 Method 3: Synthesis by N-Alkylation of Oximes;382
1.14.1.1.1.4;27.13.3.1.4 Method 4: Synthesis by Ring-Closure Reactions;383
1.14.1.1.1.5;27.13.3.1.5 Method 5: Miscellaneous Methods;389
1.14.1.1.2;27.13.3.2 Applications of Nitrones and Cyclic Analogues in Organic Synthesis;395
1.14.1.1.2.1;27.13.3.2.1 Method 1: 1,3-Dipolar Cycloadditions;395
1.14.1.1.2.1.1;27.13.3.2.1.1 Variation 1: With Heteroaromatic Multiple Bonds;395
1.14.1.1.2.1.2;27.13.3.2.1.2 Variation 2: With Alkynes;398
1.14.1.1.2.1.3;27.13.3.2.1.3 Variation 3: With Cumulenes;402
1.14.1.1.2.1.4;27.13.3.2.1.4 Variation 4: With Heterocumulenes;404
1.14.1.1.2.1.5;27.13.3.2.1.5 Variation 5: With Alkenes;405
1.14.1.1.2.1.6;27.13.3.2.1.6 Variation 6: Intramolecular Cyclizations;412
1.14.1.1.2.1.7;27.13.3.2.1.7 Variation 7: Enantioselective Catalysis;414
1.14.1.1.2.2;27.13.3.2.2 Method 2: Nucleophilic Additions;418
1.14.1.1.2.2.1;27.13.3.2.2.1 Variation 1: Of sp-Nucleophiles;418
1.14.1.1.2.2.2;27.13.3.2.2.2 Variation 2: Of sp2-Nucleophiles;419
1.14.1.1.2.2.3;27.13.3.2.2.3 Variation 3: Of sp3-Nucleophiles;421
1.14.1.1.2.2.4;27.13.3.2.2.4 Variation 4: Of Enolates;422
1.14.1.1.2.2.5;27.13.3.2.2.5 Variation 5: Allylation;423
1.14.1.1.2.2.6;27.13.3.2.2.6 Variation 6: Reduction (Deoxygenation);424
1.14.1.1.2.2.7;27.13.3.2.2.7 Variation 7: Of P-Nucleophiles;425
1.14.1.1.2.3;27.13.3.2.3 Method 3: Metal Complex Formation;425
1.14.1.1.2.4;27.13.3.2.4 Method 4: Rearrangements;426
1.14.1.1.2.5;27.13.3.2.5 Method 5: Spin-Trapping;427
1.14.1.1.2.6;27.13.3.2.6 Method 6: Miscellaneous Reactions;428
1.15;Volume 40: Amines, Ammonium Salts, Amine N-Oxides, Haloamines, Hydroxylamines and Sulfur Analogues, and Hydrazines;440
1.15.1;40.1 Product Class 1: Amino Compounds;440
1.15.1.1;40.1.1.1.2 Reductive Amination of Carbonyl Compounds;440
1.15.1.1.1;40.1.1.1.2.1 Alkylamines from Carbonyl Compounds by Direct Reductive Amination;441
1.15.1.1.1.1;40.1.1.1.2.1.1 Method 1: Direct Reductive Amination by Catalytic Hydrogenation;441
1.15.1.1.1.1.1;40.1.1.1.2.1.1.1 Variation 1: Hydrogenation Using Heterogeneous Metal Catalysts;442
1.15.1.1.1.1.2;40.1.1.1.2.1.1.2 Variation 2: Hydrogenation Using Homogeneous Metal Complex Catalysts;442
1.15.1.1.1.1.3;40.1.1.1.2.1.1.3 Variation 3: Palladium-Catalyzed Transfer Hydrogenation;444
1.15.1.1.1.2;40.1.1.1.2.1.2 Method 2: Direct Reductive Amination Using Silanes as a Hydrogen Source;445
1.15.1.1.1.2.1;40.1.1.1.2.1.2.1 Variation 1: Using Polymethylhydrosiloxane;445
1.15.1.1.1.2.2;40.1.1.1.2.1.2.2 Variation 2: Using Aminohydrosilanes;446
1.15.1.1.1.2.3;40.1.1.1.2.1.2.3 Variation 3: Using Triethylsilane;446
1.15.1.1.1.2.4;40.1.1.1.2.1.2.4 Variation 4: Using Phenylsilane;447
1.15.1.1.1.3;40.1.1.1.2.1.3 Method 3: Direct Reductive Amination with Borohydride or Borane Reducing Agents;447
1.15.1.1.1.3.1;40.1.1.1.2.1.3.1 Variation 1: Using Sodium Cyanoborohydride;447
1.15.1.1.1.3.2;40.1.1.1.2.1.3.2 Variation 2: Using Sodium Borohydride;450
1.15.1.1.1.3.3;40.1.1.1.2.1.3.3 Variation 3: Using Zirconium(II) or Copper(I) Borohydrides;452
1.15.1.1.1.3.4;40.1.1.1.2.1.3.4 Variation 4: Using Sodium Triacyloxyborohydrides;453
1.15.1.1.1.3.5;40.1.1.1.2.1.3.5 Variation 5: Using Aminoboranes;454
1.15.1.1.1.3.6;40.1.1.1.2.1.3.6 Variation 6: One-Pot Direct Reductive Amination via Borane Reduction of Imines;455
1.15.1.1.2;40.1.1.1.2.2 Primary Alkylamines from Oximes and O-Alkyloximes;456
1.15.1.1.2.1;40.1.1.1.2.2.1 Primary Alkylamines from Oximes;457
1.15.1.1.2.1.1;40.1.1.1.2.2.1.1 Method 1: Catalytic Hydrogenation;457
1.15.1.1.2.1.2;40.1.1.1.2.2.1.2 Method 2: Catalytic Transfer Hydrogenation;458
1.15.1.1.2.1.3;40.1.1.1.2.2.1.3 Method 3: Reduction with Metallic Zinc;459
1.15.1.1.2.1.3.1;40.1.1.1.2.2.1.3.1 Variation 1: Using Zinc in the Presence of Ammonia;459
1.15.1.1.2.1.3.2;40.1.1.1.2.2.1.3.2 Variation 2: Using Zinc in the Presence of a Carboxylic Acid;460
1.15.1.1.2.1.4;40.1.1.1.2.2.1.4 Method 4: Reductions with Borane or Borohydrides;461
1.15.1.1.2.1.4.1;40.1.1.1.2.2.1.4.1 Variation 1: Reduction with Borane;461
1.15.1.1.2.1.4.2;40.1.1.1.2.2.1.4.2 Variation 2: Reduction with Borohydrides;461
1.15.1.1.2.1.5;40.1.1.1.2.2.1.5 Method 5: Reductions with Aluminum Trihydride or Hydroaluminates;463
1.15.1.1.2.2;40.1.1.1.2.2.2 Primary Alkylamines from O-Alkyloximes;463
1.15.1.1.3;40.1.1.1.2.3 Secondary Alkylamines from N-Alkylidenealkylamines by Reduction;465
1.15.1.1.3.1;40.1.1.1.2.3.1 Method 1: Stereorandom Reduction of N-Alkylidenealkylamines to Secondary Alkylamines;465
1.15.1.1.3.1.1;40.1.1.1.2.3.1.1 Variation 1: Via Hetereogenous Hydrogenation;465
1.15.1.1.3.1.2;40.1.1.1.2.3.1.2 Variation 2: Via Lewis Acid Catalyzed Hydrogenation;466
1.15.1.1.3.1.3;40.1.1.1.2.3.1.3 Variation 3: Via Transfer Hydrogenation;466
1.15.1.1.3.1.4;40.1.1.1.2.3.1.4 Variation 4: By Reduction with Hydrides;467
1.15.1.1.3.2;40.1.1.1.2.3.2 Method 2: Enantioselective Reduction of N-Alkylidenealkylamines to Secondary Alkylamines;469
1.15.1.1.4;40.1.1.1.2.4 Tertiary Alkylamines from Enamines by Reduction;470
1.15.1.1.4.1;40.1.1.1.2.4.1 Method 1: Amines from Enamines by Catalytic Hydrogenation;470
1.15.1.1.4.2;40.1.1.1.2.4.2 Method 2: Amines from Enamines by Enantioselective (Asymmetric) Catalytic Hydrogenation;472
1.15.1.1.4.3;40.1.1.1.2.4.3 Method 3: Amines from Enamines Using Other Reducing Agents;473
1.16;Author Index;478
1.17;Abbreviations;504
1.18;List of All Volumes;510


Abstracts
2.4.12 Arene Organometallic Complexes of Chromium, Molybdenum, and Tungsten
M. Uemura This review is an update to Section 2.4 and covers the literature from 1999 to 2010. (?6-Arene)chromium complexes have been considerably developed in organic synthesis on the basis of the strong electron-withdrawing ability and steric effect of the tricarbonylchromium fragment. The corresponding arenechromium complexes of unsymmetrical 1,2- or 1,3-disubstituted arene ligands are nonsuperimposable on their mirror images. Catalytic asymmetric synthesis of the planar chiral arenechromium complexes with chiral catalysts has been actively developed. The planar chiral arenetricarbonylchromium complexes have been widely employed in asymmetric synthesis, natural product synthesis, and increasingly as chiral ligands in asymmetric catalysis. This review focuses on the synthesis of planar chiral arenechromium complexes, and their applications in organic synthesis. Keywords: asymmetric hydroboration · asymmetric reduction of ketones · atropisomer · catalytic asymmetric synthesis · chromium migration · cross coupling · cycloisomerization · enantioselective lithiation · gold catalysts · higher-order cycloaddition · nucleophilic substitution · molecular switch · axially chiral biaryl · palladium catalyst · planar chirality · radical coupling 4.4.26.7 1-Diazo-1-silylalkanes
Y. Hari, T. Aoyama, and T. Shioiri This manuscript is an update to Section 4.4.26 describing methods for the synthesis and applications of 1-diazo-1-silylalkanes. This update focuses on papers published in the period 1999–2010. Keywords: silyldiazoalkanes · diazo(trimethylsilyl)methane · alkylidene carbenes · Colvin rearrangement · insertion reaction · cyclopropanation · [3 + 2] cycloaddition · diazo(silyl)acetates · diazo(silyl)methyl ketones 7.1.2.44 Aluminum Hydrides
H. Naka and S. Saito This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the preparation of aluminum hydrides used for organic synthesis, and recent advances in synthetic applications of aluminum hydrides. Various chemoselective reductions, such as partial reduction of esters, nitriles, or amides to aldehydes, are possible using aluminum hydrides with suitable ligands. Keywords: aluminum compounds · chemoselectivity · hydroalumination · metal hydrides · reduction · reductive cyclization · regioselectivity · stereoselective synthesis 7.1.3.18 Aluminum Halides
H. Naka and S. Saito This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the preparation of aluminum halides used for organic synthesis, along with recent synthetic applications of aluminum halides. Keywords: acid catalysts · aluminum compounds · bromides · chiral compounds · chlorides · halides · iodides · ionic liquids · Lewis acid catalysts · salen complexes 7.1.9.11 Triorganoaluminum Compounds
M. Oishi and H. Takikawa This manuscript is an update to the earlier Science of Synthesis contribution describing applications of triorganoaluminums and related compounds. It focuses on selective carboalumination, catalytic enantioselective conjugate additions, and carbonyl additions covered in the literature over the period 2004–2010. In addition, activations of C—F and C—H bonds are of increasing importance in organoaluminum chemistry. Keywords: carboalumination · carbonyl additions · conjugate addition reactions · coupling reactions · regioselectivity · enantioselectivity · C—H bond activation · C—F bond activation 7.2.8 Gallium Compounds
M. Yamaguchi This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of organogallium compounds as well as their application in organic synthesis. It focuses on the literature published in the period 2002–2010. Keywords: catalysis · complexation · gallium compounds · Lewis acid catalysts · metal alkyl complexes · organometallic reagents · oxidative addition 7.3 Product Class 3: Indium Compounds
S. Araki and T. Hirashita This manuscript is a revision update to the earlier Science of Synthesis contribution describing methods for the synthesis of indium compounds. More recent developments in this area, in particular chemical transformations using indium reagents, have been reviewed. Keywords: allylic compounds · allenic compounds · allylation · Barbier reaction · carbon—metal bonds · carbon–carbon coupling reactions · indium compounds · Lewis acid catalysts · transmetalation 7.9.5 Barium Compounds
A. Yanagisawa This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the application of barium compounds in organic synthesis. It focuses on the literature published in the decade up to 2010. Keywords: aldol reaction · ß-amino carbonyl compounds · asymmetric catalysis · barium compounds · conjugate addition · cross-coupling reactions · Diels–Alder reaction · 1,5-diketones · homocoupling · ß-hydroxy carbonyl compounds · Mannich-type reaction · propargylic compounds 8.1.28 The Catalytic Use of Lithium Compounds for Bond Formation
S. Matsunaga The catalytic use of lithium compounds as Lewis bases and Brønsted bases is introduced. Several C—C bond-forming (enantioselective) transformations, such as aldol reactions, Mannich reactions, cyanation, conjugate additions, sulfur ylide additions for oxirane and oxetane synthesis, and others, are described. Keywords: asymmetric aldol reaction · asymmetric Mannich reaction · asymmetric cyanation · lithium compounds · Lewis base catalysts · asymmetric conjugate addition reactions · asymmetric Michael reaction · sulfur ylides · oxetane · oxiranes · Brønsted base catalysts 8.2.16 The Catalytic Use of Sodium Compounds for Bond Formation
T. Arai Safe and inexpensive sodium reagents are promoted as versatile Lewis base, Lewis acid, and combination acid–base catalysts in green chemistry. Sodium-containing heterobimetallic asymmetric complexes enable highly stereoselective catalysis of transformations such as Michael reactions, cyclopropanation, and the Henry reaction. Keywords: sodium compounds · catalysis · asymmetric synthesis · Mukaiyama reaction · Michael reaction 16.8.5 Pyridazines
J. Zhang This manuscript is an update of the original Science of Synthesis chapter and includes methods for the preparation of pyridazines and pyridazinones described in the literature up to 2010. Methods proceeding by condensation of diketones, keto acids, or keto esters with hydrazine, and Diels–Alder reaction of 1,2,4,5-tetrazines and ketones are covered, as well as the application of halopyridazines in palladium-catalyzed cross-coupling reactions. Keywords: pyridazines · ring closure · condensation reactions · dicarbonyl compounds · Diels–Alder reaction · cross-coupling reactions 20.2.1.8.13 Synthesis with Retention of the Functional Group (Update 1)
G. Landelle and J.-F. Paquin This manuscript is an update to the earlier Science of Synthesis contribution, and specifically describes methods involving conjugate addition to a,ß-unsaturated carboxylic acids. It focuses on the literature published in the period 1982–2009. Keywords: conjugate addition · carboxylic acids · unsaturated compounds · organometallic reagents · stereoselectivity · regioselectivity 20.2.1.8.14 Synthesis with Retention of the Functional Group (Update 2)
J. L. Gleason and E. A. Tiong This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of carboxylic acids. It focuses on direct a-alkylations of carboxylic acids and diastereoselective a-alkylation of carboxylic acid derivatives used in carboxylic acid synthesis. Keywords: alkylation · carboxylic acid · chiral auxiliary · enolates · alkyl halides · tertiary stereocenters · quaternary stereocenters 21.15 Product Class 15: Polyamides
T. Higashihara and M. Ueda This manuscript describes methods for the...


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.