Buch, Englisch, 660 Seiten, Format (B × H): 166 mm x 244 mm, Gewicht: 1113 g
Buch, Englisch, 660 Seiten, Format (B × H): 166 mm x 244 mm, Gewicht: 1113 g
Reihe: Applied Mathematical Sciences
ISBN: 978-0-387-30888-3
Verlag: Springer
This book is written to provide a common, mathematically sound foundation for least-squares finite element methods. It is intended to give both the researcher and the practitioner a concise guide to the theory and practice of least-square finite element methods, their strengths and weaknesses, established successes, and open problems.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Survey of Variational Principles and Associated Finite Element Methods.- Classical Variational Methods.- Alternative Variational Formulations.- Abstract Theory of Least-Squares Finite Element Methods.- Mathematical Foundations of Least-Squares Finite Element Methods.- The Agmon#x2013;Douglis#x2013;Nirenberg Setting for Least-Squares Finite Element Methods.- Least-Squares Finite Element Methods for Elliptic Problems.- Scalar Elliptic Equations.- Vector Elliptic Equations.- The Stokes Equations.- Least-Squares Finite Element Methods for Other Settings.- The Navier#x2013;Stokes Equations.- Parabolic Partial Differential Equations.- Hyperbolic Partial Differential Equations.- Control and Optimization Problems.- Variations on Least-Squares Finite Element Methods.- Supplementary Material.- Analysis Tools.- Compatible Finite Element Spaces.- Linear Operator Equations in Hilbert Spaces.- The Agmon#x2013;Douglis#x2013;Nirenberg Theory and Verifying its Assumptions.