E-Book, Englisch, 709 Seiten, eBook
Bisong Building Machine Learning and Deep Learning Models on Google Cloud Platform
1. Auflage 2019
ISBN: 978-1-4842-4470-8
Verlag: APRESS
Format: PDF
Kopierschutz: 1 - PDF Watermark
A Comprehensive Guide for Beginners
E-Book, Englisch, 709 Seiten, eBook
ISBN: 978-1-4842-4470-8
Verlag: APRESS
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Weitere Infos & Material
Part 1: Getting Started with Google Cloud Platform.- Chapter 1: What Is Cloud Computing?.- Chapter 2: An Overview of Google Cloud Platform Services.- Chapter 3: The Google Cloud SDK and Web CLI.- Chapter 4: Google Cloud Storage (GCS).- Chapter 5: Google Compute Engine (GCE).- Chapter 6: JupyterLab Notebooks.- Chapter 7: Google Colaboratory.- Part 2: Programming Foundations for Data Science.- Chapter 8: What is Data Science?.- Chapter 9: Python.- Chapter 10: Numpy.- Chapter 11: Pandas.- Chapter 12: Matplotlib and Seaborn.- Part 3: Introducing Machine Learning.- Chapter 13: What Is Machine Learning?.- Chapter 14: Principles of Learning.- Chapter 15: Batch vs. Online Learning.- Chapter 16: Optimization for Machine Learning: Gradient Descent.- Chapter 17: Learning Algorithms.- Part 4: Machine Learning in Practice.- Chapter 18: Introduction to Scikit-learn.- Chapter 19: Linear Regression.- Chapter 20: Logistic Regression.- Chapter 21: Regularization for Linear Models.- Chapter 22: Support Vector Machines.- Chapter 23: Ensemble Methods.- Chapter 24: More Supervised Machine Learning Techniques with Scikit-learn.- Chapter 25: Clustering.- Chapter 26: Principal Components Analysis (PCA).- Part 5: Introducing Deep Learning.- Chapter 27: What is Deep Learning?.- Chapter 28: Neural Network Foundations.- Chapter 29: Training a Neural Network.- Part 6: Deep Learning in Practice.- Chapter 30: TensorFlow 2.0 and Keras.- Chapter 31: The Multilayer Perceptron (MLP).- Chapter 32: Other Considerations for Training the Network.- Chapter 33: More on Optimization Techniques.- Chapter 34: Regularization for Deep Learning.- Chapter 35: Convolutional Neural Networks (CNN).- Chapter 36: Recurrent Neural Networks (RNN).- Chapter 37: Autoencoders.- Part 7: Advanced Analytics/ Machine Learning on Google Cloud Platform.- Chapter 38: Google BigQuery.- Chapter 39: Google Cloud Dataprep.- Chapter 40: Google Cloud Dataflow.- Chapter 41: Google Cloud Machine Learning Engine (Cloud MLE).- Chapter 42: Google AutoML: Cloud Vision.- Chapter 43: Google AutoML: Cloud Natural Language Processing.- Chapter 44: Model to Predict the Critical Temperature of Superconductors.- Part 8: Productionalizing Machine Learning Solutions on GCP.- Chapter 45: Containers and Google Kubernetes Engine.- Chapter 46: Kubeflow and Kubeflow Pipelines.- Chapter 47: Deploying an End-to-End Machine Learning Solution on Kubeflow Pipelines.-