Bismut / Shen / Wei | Coherent Sheaves, Superconnections, and Riemann-Roch-Grothendieck | E-Book | sack.de
E-Book

E-Book, Englisch, Band 347, 184 Seiten, eBook

Reihe: Progress in Mathematics

Bismut / Shen / Wei Coherent Sheaves, Superconnections, and Riemann-Roch-Grothendieck


1. Auflage 2023
ISBN: 978-3-031-27234-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 347, 184 Seiten, eBook

Reihe: Progress in Mathematics

ISBN: 978-3-031-27234-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This monograph addresses two significant related questions in complex geometry: the construction of a Chern character on the Grothendieck group of coherent sheaves of a compact complex manifold with values in its Bott-Chern cohomology, and the proof of a corresponding Riemann-Roch-Grothendieck  theorem.  One main tool used is the equivalence of categories established by Block between the derived category of bounded complexes with coherent cohomology and the homotopy category of antiholomorphic superconnections.  Chern-Weil theoretic techniques are then used to construct forms that represent the Chern character. The main theorem is then established using methods of analysis, by combining local index theory with the hypoelliptic Laplacian. Coherent Sheaves, Superconnections, and Riemann-Roch-Grothendieck is an important contribution to both the geometric and analytic study of complex manifolds and, as such, it will be a valuable resource formany researchers in geometry, analysis, and mathematical physics.
Bismut / Shen / Wei Coherent Sheaves, Superconnections, and Riemann-Roch-Grothendieck jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Introduction.- Bott-Chern Cohomology and Characteristic Classes.- The Derived Category ${\mathrm{D^{b}_{\mathrm{coh}}}}$.- Preliminaries on Linear Algebra and Differential Geometry.- The Antiholomorphic Superconnections of Block.- An Equivalence of Categories.- Antiholomorphic Superconnections and Generalized Metrics.- Generalized Metrics and Chern Character Forms.- The Case of Embeddings.- Submersions and Elliptic Superconnections.- Elliptic Superconnection Forms and Direct Images.- A Proof of Theorem 10-1 when $\overline{\partial}^{X}\partial^{X}\omega^{X}=0$..- The Hypoelliptic Superconnections.- The Hypoelliptic Superconnection Forms.-  The Hypoelliptic Superconnection Forms when $\overline{\partial}^{X}\partial^{X}\omega^{X}=0$.-  Exotic Superconnections and Riemann-Roch-Grothendieck.- Subject Index.- Index of Notation.- Bibliography.


Jean-Michel Bismut is a French mathematician who is a professor in the Mathematics Department in Orsay. He is known for his contributions to index theory, geometric analysis and probability theory. Together with Gilles Lebeau, he has developed the theory of the hypoelliptic Laplacian, to which he found applications in various fields of mathematics. He shared the Shaw Prize in Mathematical Sciences 2021 with Jeff Cheeger.  Shu Shen is a maître de conférences at Sorbonne University in Paris. His research focuses on the fields of analysis, geometry, and representation theory. Zhaoting Wei is an assistant professor in mathematics at Texas A&M University-Commerce, USA. His research interests include noncommutative geometry and higher category theory.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.