Buch, Englisch, 185 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1000 g
ISBN: 978-0-7923-3596-2
Verlag: Springer Netherlands
Recent years have witnessed an increasingly close relationship growing between potential theory, probability and degenerate partial differential operators. The theory of Dirichlet (Markovian) forms on an abstract finite or infinite-dimensional space is common to all three disciplines. This is a fascinating and important subject, central to many of the contributions to the conference on `Potential Theory and Degenerate Partial Differential Operators', held in Parma, Italy, February 1994.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Sobolev Inequalities on Homogeneous Spaces.- Regularity for Solutions of Quasilinear Elliptic Equations under Minimal Assumptions.- Dimensions at Infinity for Riemannian Manifolds.- On Infinite Dimensional Sheets.- Weighted Poincaré Inequalities for Hörmander Vector Fields and Local Regularity for a Class of Degenerate Elliptic Equations.- Reflecting Diffusions on Lipschitz Domains with Cusps — Analytic Construction and Skorohod Representation.- Fermabilité des formes de Dirichlet et inégalité de type Poincaré.- Comparaison Hölderienne des distances sous-elliptiques et calcul S (m,g).- Parabolic Harnack Inequality for Divergence Form Second Order Differential Operators.- Recenti risultati sulla teoria degli operatori vicini.- Existence of Bounded Solutions for Some Degenerated Quasilinear Elliptic Equations.