Bianchi / Maiorino / Kampffmeyer | Recurrent Neural Networks for Short-Term Load Forecasting | Buch | 978-3-319-70337-4 | sack.de

Buch, Englisch, 72 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1416 g

Reihe: SpringerBriefs in Computer Science

Bianchi / Maiorino / Kampffmeyer

Recurrent Neural Networks for Short-Term Load Forecasting

An Overview and Comparative Analysis
1. Auflage 2017
ISBN: 978-3-319-70337-4
Verlag: Springer

An Overview and Comparative Analysis

Buch, Englisch, 72 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1416 g

Reihe: SpringerBriefs in Computer Science

ISBN: 978-3-319-70337-4
Verlag: Springer


The key component in forecasting demand and consumption of resources in a supply network is an accurate prediction of real-valued time series. Indeed, both service interruptions and resource waste can be reduced with the implementation of an effective forecasting system.

Significant research has thus been devoted to the design and development of methodologies for short term load forecasting over the past decades. A class of mathematical models, called Recurrent Neural Networks, are nowadays gaining renewed interest among researchers and they are replacing many practical implementations of the forecasting systems, previously based on static methods. Despite the undeniable expressive power of these architectures, their recurrent nature complicates their understanding and poses challenges in the training procedures.

Recently, new important families of recurrent architectures have emerged and their applicability in the context of load forecasting has not been investigated completely yet. This work performs a comparative study on the problem of Short-Term Load Forecast, by using different classes of state-of-the-art Recurrent Neural Networks. The authors test the reviewed models first on controlled synthetic tasks and then on different real datasets, covering important practical cases of study. The text also provides a general overview of the most important architectures and defines guidelines for configuring the recurrent networks to predict real-valued time series.
Bianchi / Maiorino / Kampffmeyer Recurrent Neural Networks for Short-Term Load Forecasting jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Introduction.- Properties and Training in Recurrent Neural Networks.- Recurrent Neural Networks Architectures.- Other Recurrent Neural Networks Models.- Synthetic Time Series.- Real-World Load Time Series.- Experiments.- Conclusions.


Dr. Filippo Maria Bianchi is a postdoctoral researcher in the Department of Physics and Technology at the Arctic University of Norway, Tromsø, Norway. Dr. Michael C. Kampffmeyer is a research fellow at the same institution. Dr. Robert Jenssen is an associate professor at the same institution. Dr.  Enrico Maiorino is a research fellow in the Channing Division of Network Medicine at Harvard Medical School, Boston, MA, USA. Dr. Antonello Rizzi is an assistant professor in the Department of Information Engineering, Electronics and Telecommunications at the Sapienza University of Rome, Italy.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.