Buch, Englisch, Band 1176, 358 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 721 g
Bridging Logic and Learning
Buch, Englisch, Band 1176, 358 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 721 g
Reihe: Studies in Computational Intelligence
ISBN: 978-981-97-8170-6
Verlag: Springer Nature Singapore
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Robotik
- Mathematik | Informatik EDV | Informatik Informatik Mensch-Maschine-Interaktion
Weitere Infos & Material
The Emergence of Neuro-Symbolic Artificial Intelligence.- Neuro-Symbolic AI: The Fusion of Symbolic Reasoning and Machine Learning.- Neuro-Symbolic AI: The Integration of Continuous Learning and Discrete Reasoning.- Knowledge Representation in Artificial Intelligence.- Rule-based Systems and Expert Systems.- Knowledge Graphs: Representation and Reasoning.- Feedforward Neural Networks and Backpropagation.- Convolution in Neural Networks.- Recurrent Neural Networks (RNNs): Capturing the Dynamics of Sequences.- Overview of Neuro-Symbolic Integration Frameworks.- Learning from Symbolic Knowledge for Neural Networks.- Neural Extraction of Symbolic Knowledge.- Graph Neural Networks in Neural-Symbolic Computing.- Rule-based Reasoning in Neural Networks.- Common Sense Reasoning for Neuro-Symbolic AI.- Explainable and Trustworthy AI with Neuro-Symbolic Approaches.- Neuro-Symbolic AI in various Domains.- Towards Artificial General Intelligence?.- Learning and Reasoning over Higher Ordered Geometrical Structures.- Key Takeaways from Neuro-Symbolic AI.