E-Book, Englisch, 710 Seiten, eBook
Reihe: NanoScience and Technology
E-Book, Englisch, 710 Seiten, eBook
Reihe: NanoScience and Technology
ISBN: 978-3-642-10497-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Scanning Probe Microscopy in Nanoscience and Nanotechnology 2;3
1.1;Foreword;5
1.2;Preface;7
1.3;Contents;9
1.4;Contributors;21
1.5;Part I Scanning Probe Microscopy Techniques;27
1.5.1;Chapter 1 Time-Resolved Tapping-Mode Atomic Force Microscopy;28
1.5.1.1;1.1 Introduction;28
1.5.1.2;1.2 Tip–Sample Interactions in TM-AFM;30
1.5.1.2.1;1.2.1 Interaction Forces in TM-AFM;30
1.5.1.2.2;1.2.2 Cantilever Dynamics and Mechanical Bandwidth in TM-AFM;31
1.5.1.3;1.3 AFM Probes with Integrated Interferometric High Bandwidth Force Sensors;33
1.5.1.3.1;1.3.1 Model;34
1.5.1.3.2;1.3.2 Interferometric Grating Sensor;38
1.5.1.3.3;1.3.3 Sensor Mechanical Response & Temporal Resolution;44
1.5.1.3.4;1.3.4 Fabrication;46
1.5.1.3.5;1.3.5 Detection Schemes;48
1.5.1.3.6;1.3.6 Characterization and Calibration;51
1.5.1.3.7;1.3.7 Time-Resolved Force Measurements;52
1.5.1.4;1.4 Imaging Applications;55
1.5.1.4.1;1.4.1 Nanomechanical Material Mapping;56
1.5.1.4.2;1.4.2 Imaging of Molecular Structures in Self Assembled Monolayers;57
1.5.1.4.3;1.4.3 Imaging Microphase Seperationin Triblock Copolymer;58
1.5.1.5;1.5 Conclusion;59
1.5.1.6;References;60
1.5.2;Chapter 2 Small Amplitude Atomic Force Spectroscopy;63
1.5.2.1;2.1 Introduction;63
1.5.2.2;2.2 Small Amplitude Spectroscopy;66
1.5.2.2.1;2.2.1 Actuation Techniques;67
1.5.2.2.1.1;2.2.1.1 Sample Modulation;68
1.5.2.2.1.2;2.2.1.2 Magnetic Driving;71
1.5.2.2.1.3;2.2.1.3 Acoustic Driving;74
1.5.2.2.2;2.2.2 Effect Frequency Dependent Damping;77
1.5.2.3;2.3 Summary;78
1.5.2.4;References;81
1.5.3;Chapter 3 Combining Scanning Probe Microscopy and Transmission Electron Microscopy;83
1.5.3.1;3.1 Introduction;84
1.5.3.1.1;3.1.1 Why Combine SPM and TEM?;84
1.5.3.2;3.2 Some Aspects of TEM Instrumentation;86
1.5.3.3;3.3 Incorporating an STM Inside a TEM Instrument;87
1.5.3.3.1;3.3.1 Applications of TEMSTM;90
1.5.3.3.1.1;3.3.1.1 Electron Transport Studies;90
1.5.3.3.1.2;3.3.1.2 Field Emission;92
1.5.3.3.1.3;3.3.1.3 Electromigration;92
1.5.3.3.1.4;3.3.1.4 Joule Heating;93
1.5.3.3.1.5;3.3.1.5 Mechanical Studies;98
1.5.3.4;3.4 Incorporating an AFM Inside a TEM Instrument;99
1.5.3.4.1;3.4.1 Optical Force Detection Systems;100
1.5.3.4.2;3.4.2 Non-optical Force Detection Systems;101
1.5.3.4.3;3.4.3 TEMAFM Applications;104
1.5.3.4.3.1;3.4.3.1 Elastic Measurements;104
1.5.3.4.3.2;3.4.3.2 Electromechanical Properties;105
1.5.3.4.3.3;3.4.3.3 Atomic Scale Wires;106
1.5.3.4.3.4;3.4.3.4 Friction and Adhesion;107
1.5.3.5;3.5 Combined TEM and SPM Sample Preparation;108
1.5.3.5.1;3.5.1 Nanowires and Nanoparticles;109
1.5.3.5.2;3.5.2 A Proper Electrical Contact for TEMSPM;111
1.5.3.5.3;3.5.3 Lamella Samples;114
1.5.3.5.4;3.5.4 Electron Beam Irradiation Effects;114
1.5.3.6;3.6 Conclusion;116
1.5.3.7;References;117
1.5.4;Chapter 4 Scanning Probe Microscopy and Grazing-Incidence Small-Angle Scattering as Complementary Tools for the Investigation of Polymer Films and Surfaces;124
1.5.4.1;4.1 Introduction;124
1.5.4.2;4.2 Statistical Analysis of SPM Data;126
1.5.4.3;4.3 Introduction to Grazing-Incidence Small-Angle Scattering;132
1.5.4.4;4.4 Comparison of Real and Reciprocal Space Data;136
1.5.4.5;4.5 Complementary and In Situ Experiments;140
1.5.4.6;4.6 Combined In Situ GISAXS and SPM Measurements;150
1.5.4.7;4.7 Summary and Outlook;151
1.5.4.8;References;152
1.5.5;Chapter 5 Near-Field Microwave Microscopy for Nanoscienceand Nanotechnology;158
1.5.5.1;5.1 Principles of Microwave Microscope;158
1.5.5.1.1;5.1.1 Introduction;158
1.5.5.1.2;5.1.2 Near-field Interaction;159
1.5.5.1.3;5.1.3 Microwave Frequencies;161
1.5.5.2;5.2 Detailed Description of the Near-field Microwave Microscope;162
1.5.5.2.1;5.2.1 Probe-Tip for NFMM;162
1.5.5.2.2;5.2.2 Dipole–Dipole Interaction;163
1.5.5.2.3;5.2.3 Tip–sample Distance Control in NFMM;164
1.5.5.2.4;5.2.4 The Basic Experimental Setup of NFMM;166
1.5.5.3;5.3 Theory of Near-field Microwave Microscope;167
1.5.5.3.1;5.3.1 Transmission Line Theory;167
1.5.5.3.2;5.3.2 Perturbation Theory;169
1.5.5.3.3;5.3.3 Finite-Element Model;170
1.5.5.4;5.4 Electromagnetic Field Distribution;175
1.5.5.4.1;5.4.1 Probe-tip–fluid Interaction;175
1.5.5.4.2;5.4.2 Probe-tip–photosensitive Heterojunction Interaction;176
1.5.5.4.3;5.4.3 Probe-Tip–Ferromagnetic Thin Film, Magnetic Domain Interaction;177
1.5.5.5;5.5 Experimental Results and Images Obtained by Near-Field Microwave Microscope;179
1.5.5.5.1;5.5.1 NFMM Characterization of Dielectrics and Metals;179
1.5.5.5.2;5.5.2 NFMM Characterization of Semiconductor Thin Films;180
1.5.5.5.3;5.5.3 NFMM Characterization of DNA Array, SAMs, and Mixture Fluids;181
1.5.5.5.4;5.5.4 Biosensing of Fluids by a NFMM;183
1.5.5.5.5;5.5.5 NFMM Characterization of Solar Cells;185
1.5.5.5.6;5.5.6 NFMM Characterization of Organic FET;188
1.5.5.5.7;5.5.7 NFMM Characterization of Magnetic Domains;190
1.5.5.6;References;192
1.5.6;Chapter 6 Single Cluster AFM Manipulation: a Specialized Tool to Explore and Control Nanotribology Effects;195
1.5.6.1;6.1 Introduction;195
1.5.6.2;6.2 Manipulation and Friction Effects Explored by Dynamic AFM;197
1.5.6.2.1;6.2.1 Experimental Evidences;197
1.5.6.2.2;6.2.2 Controlled Movements;201
1.5.6.2.3;6.2.3 Depinning and Energy Dissipation;203
1.5.6.3;6.3 The Problem of Contact Area in Nanotribology Explored by AFM Cluster Manipulation;208
1.5.6.4;6.4 Conclusion;213
1.5.6.5;References;214
1.6;Part II Characterization;217
1.6.1;Chapter 7 Cell Adhesion Receptors Studied by AFM-Based Single-Molecule Force Spectroscopy;218
1.6.1.1;7.1 Introduction;219
1.6.1.2;7.2 AFM-Based Single-Molecule Force Spectroscopy;223
1.6.1.3;7.3 Receptor–Ligand Interactions;224
1.6.1.4;7.4 Cell Adhesion Interactions on Living Cells;225
1.6.1.5;7.5 Limitations of the AFM Method;233
1.6.1.6;References;234
1.6.2;Chapter 8 Biological Application of Fast-Scanning Atomic Force Microscopy;237
1.6.2.1;8.1 Introduction;237
1.6.2.2;8.2 Principles of Biological Fast-Scanning AFM;239
1.6.2.2.1;8.2.1 Hansma's Fast-Scanning AFM;239
1.6.2.2.2;8.2.2 Miles' Fast-Scanning AFM;239
1.6.2.2.3;8.2.3 Ando's Fast-Scanning AFM;240
1.6.2.3;8.3 Effects of a Scanning Probe and Mica Surface on Biological Specimens;241
1.6.2.3.1;8.3.1 Experimental Conditions Required for Fast-Scanning AFM Imaging;241
1.6.2.3.2;8.3.2 Effects of High-Speed Scanning on the Behavior of DNA in Solution;242
1.6.2.3.3;8.3.3 Effects of High-Speed Scanning on Protein Movement;242
1.6.2.4;8.4 Application to Biological Macromolecule Interactions;245
1.6.2.4.1;8.4.1 Application to Protein–Protein Interaction;245
1.6.2.4.1.1;8.4.1.1 Single-Molecule Kinetics Analyses of Chaperonin Reaction;245
1.6.2.4.1.2;8.4.1.2 Single-Molecule Morphological Analyses of Motor Proteins;248
1.6.2.4.2;8.4.2 Application to DNA–Protein Interaction;249
1.6.2.4.2.1;8.4.2.1 Dynamics of DNA-Targeted Enzyme Reaction;249
1.6.2.4.2.2;8.4.2.2 Dynamics of More Complex Protein–DNA Interaction;251
1.6.2.4.2.3;8.4.2.3 Nucleosome Dynamics: Sliding and Disruption;253
1.6.2.5;8.5 Mechanisms of Signal Transduction at the Single-Molecule Level;253
1.6.2.5.1;8.5.1 Conformational Changes of Ligand-GatedIon Channels;255
1.6.2.5.2;8.5.2 Conformational Changes of G-protein Coupled Receptors;255
1.6.2.5.3;8.5.3 Direct Visualization of Albers–Post Scheme of P-Type ATPases;256
1.6.2.6;8.6 Conclusion;258
1.6.2.7;References;258
1.6.3;Chapter 9 Transport Properties of Graphene with Nanoscale Lateral Resolution;267
1.6.3.1;9.1 Introduction;268
1.6.3.2;9.2 Transport Properties of Graphene;272
1.6.3.2.1;9.2.1 Electronic Bandstructure and Dispersion Relation;272
1.6.3.2.2;9.2.2 Density of States;276
1.6.3.2.3;9.2.3 Carrier Density;276
1.6.3.2.4;9.2.4 Quantum Capacitance;278
1.6.3.2.5;9.2.5 Transport Properties: Mobility, Electron Mean Free Path;279
1.6.3.2.5.1;9.2.5.1 Intrinsic Transport Properties;280
1.6.3.2.5.2;9.2.5.2 Transport Properties Limited by Extrinsic Scattering Mechanisms;282
1.6.3.2.5.3;9.2.5.3 Electronic Transport Close to the Dirac Point;283
1.6.3.2.5.4;9.2.5.4 Transport Far from the Dirac Point;284
1.6.3.3;9.3 Local Transport Properties of Graphene by Scanning Probe Methods;289
1.6.3.3.1;9.3.1 Lateral Inhomogeneity in the Carrier Density and in the Density of States;289
1.6.3.3.1.1;9.3.1.1 Scanning Single Electron Transistor Microscopy;289
1.6.3.3.1.2;9.3.1.2 Scanning Tunneling Microscopy and Spectroscopy;291
1.6.3.3.2;9.3.2 Nanoscale Measurements of Graphene Quantum Capacitance;293
1.6.3.3.3;9.3.3 Local Electron Mean Free Path and Mobility in Graphene;295
1.6.3.3.4;9.3.4 Local Electronic Properties of Epitaxial Graphene/4H-SiC (0001) Interface;298
1.6.3.4;9.4 Conclusion;301
1.6.3.5;References;302
1.6.4;Chapter 10 Magnetic Force Microscopy Studies of Magnetic Features and Nanostructures;306
1.6.4.1;10.1 Magnetic Force Microscopy;306
1.6.4.1.1;10.1.1 Introduction;306
1.6.4.1.2;10.1.2 MFM Basic Principles;307
1.6.4.1.3;10.1.3 MFM Image Contrast;308
1.6.4.1.4;10.1.4 Magnetic Imaging Resolution;309
1.6.4.2;10.2 High-Resolution MFM Tips;310
1.6.4.3;10.3 Magnetic Domains;315
1.6.4.4;10.4 Patterned Nanomagnetic Films;320
1.6.4.4.1;10.4.1 FIB Milled Patterns;320
1.6.4.4.1.1;10.4.1.1 FIB Milling;320
1.6.4.4.1.2;10.4.1.2 Magnetic Interactions of Ni80Fe20 Arrays;320
1.6.4.4.2;10.4.2 Arrays of Magnetic Dots by Direct Laser Patterning;322
1.6.4.4.2.1;10.4.2.1 Direct Laser Interference Patterning;322
1.6.4.4.2.2;10.4.2.2 In Situ MFM Imaging Under Applied Magnetic Fields;324
1.6.4.5;10.5 Template-Mediated Assembly of FePt Nanoclusters;328
1.6.4.6;10.6 Interlayer Exchange-Coupled Nanocomposite Thin Films;329
1.6.4.6.1;10.6.1 (Co/Pt)/NiO/(CoPt) Multilayers with Perpendicular Anisotropy;330
1.6.4.6.1.1;10.6.1.1 Introduction;330
1.6.4.6.1.2;10.6.1.2 MFM Images of Varying NiO Thickness;330
1.6.4.6.1.3;10.6.1.3 Domain Overlap;331
1.6.4.6.2;10.6.2 Co/Ru/Co Trilayers with In-Plane Anisotropy;332
1.6.4.7;10.7 Conclusion (Outlook);333
1.6.4.8;References;334
1.6.5;Chapter 11 Semiconductors Studied by Cross-sectional Scanning Tunneling Microscopy;339
1.6.5.1;11.1 Introduction;339
1.6.5.2;11.2 Cleaving Methods and Geometries;340
1.6.5.3;11.3 Properties of Cleaved Surfaces;345
1.6.5.3.1;11.3.1 The (111) Surface of Silicon and Germanium;345
1.6.5.3.2;11.3.2 The (110) Surface of Silicon;347
1.6.5.3.3;11.3.3 The (110) Surface of III–V Semiconductors;347
1.6.5.3.4;11.3.4 The (110) Surface of II–VI Semiconductors;348
1.6.5.4;11.4 Semiconductor Bulk Properties;348
1.6.5.4.1;11.4.1 Ordering in Semiconductor Alloys;348
1.6.5.4.2;11.4.2 Phase Separation Effects;350
1.6.5.5;11.5 Low-Dimensional Semiconductor Nanostructures;350
1.6.5.5.1;11.5.1 Quantum Wells;351
1.6.5.5.2;11.5.2 Quantum Dots;355
1.6.5.6;11.6 Impurities in Semiconductors;362
1.6.5.6.1;11.6.1 Impurity Atoms in Silicon;363
1.6.5.6.2;11.6.2 Impurity Atoms in III–V and II–VI Semiconductors;364
1.6.5.7;References;367
1.6.6;Chapter 12 A Novel Approach for Oxide Scale Growth Characterization: Combining Etching with Atomic Force Microscopy;372
1.6.6.1;12.1 Introduction;373
1.6.6.2;12.2 Oxidation of Silicon Carbide;374
1.6.6.3;12.3 Silica: Growth and Crystallization;375
1.6.6.4;12.4 Etching;379
1.6.6.5;12.5 Scale and Interface Morphology;380
1.6.6.6;12.6 Kinetics: Details and Overall Model;388
1.6.6.7;12.7 Conclusion and Outlook;394
1.6.6.8;References;395
1.6.7;Chapter 13 The Scanning Probe-Based Deep Oxidation Lithography and Its Application in Studying the Spreading of Liquid n-Alkane;401
1.6.7.1;13.1 Introduction;401
1.6.7.2;13.2 Part 1. The Chemical Patterning Method for Alkane Spreading Study;402
1.6.7.2.1;13.2.1 Octadecyltrichlorosilane as the Substrate for Pattern Fabrication;402
1.6.7.2.2;13.2.2 Fabricating Hydrophilic Chemical Patterns on OTS: The Scanning Probe Deep OxidationLithography;404
1.6.7.2.2.1;13.2.2.1 The Experimental Setup;404
1.6.7.2.3;13.2.3 The Structure and Chemistry of the OTSpd Pattern;406
1.6.7.2.4;13.2.4 The Depth of the OTSpd Pattern;407
1.6.7.2.5;13.2.5 OTSpd Is Terminated with Carboxylic Acid Group;409
1.6.7.2.6;13.2.6 The Two-Step Patterning Method for Liquid Spreading Studies;411
1.6.7.2.7;13.2.7 The Validity of the Two-Step Patterning Approach;411
1.6.7.2.8;13.2.8 The Time Scale of the Heating–Freezing Cycle and the Time Scale of the Spreading;412
1.6.7.2.8.1;13.2.8.1 Feasibility of the ``Heat–Freeze'' Approach to Capture Snapshots of Spreading;412
1.6.7.2.8.2;13.2.8.2 Interference by Surface Freezing;413
1.6.7.3;13.3 Part 2. Structures of Long-Chain Alkanes on Surface;413
1.6.7.3.1;13.3.1 Alkane Structures on Hydrophilic Surfaces and on Hydrophobic Surfaces;414
1.6.7.3.1.1;13.3.1.1 The Alkane Tilting in the Seaweed-Shaped Alkane Layers;414
1.6.7.3.2;13.3.2 The Multiple Domains Within a Seaweed-Shaped Layer;417
1.6.7.4;13.4 Part 3. The Role of Vapor During the Spreadingof Liquid Alkane;419
1.6.7.4.1;13.4.1 The Stability of the Parallel Layer Duringthe Spreading;423
1.6.7.5;13.5 Conclusion;426
1.6.7.6;References;427
1.6.8;Chapter 14 Self-assembled Transition Metal Nanoparticles on Oxide Nanotemplates;430
1.6.8.1;14.1 Introduction;430
1.6.8.2;14.2 The Structure of the UT Oxide Layers;432
1.6.8.2.1;14.2.1 TiOx/Pt(111);433
1.6.8.2.2;14.2.2 Al2O3/Ni3 Al(111);435
1.6.8.2.3;14.2.3 FeO/Pt(111);437
1.6.8.3;14.3 The Oxide Layers as Nanotemplates for Metal NPs;438
1.6.8.3.1;14.3.1 Au and Fe on z'-TiOx-Pt(111);439
1.6.8.3.2;14.3.2 Metals on Al2O3/Ni3Al(111);442
1.6.8.3.3;14.3.3 Au on FeO/Pt(111);446
1.6.8.4;14.4 Conclusions;450
1.6.8.5;References;450
1.6.9;Chapter 15 Mechanical and Electrical Properties of Alkanethiol Self-Assembled Monolayers: A Conducting-Probe Atomic Force Microscopy Study;453
1.6.9.1;15.1 Introduction;453
1.6.9.2;15.2 Order, Orientation, and Surface Coverage;455
1.6.9.3;15.3 Conducting-Probe Atomic Force Microscopy;458
1.6.9.4;15.4 Theoretical Framework;463
1.6.9.4.1;15.4.1 Elastic Adhesive Contact;463
1.6.9.4.2;15.4.2 Effective Elastic Modulus of a Film–Substrate System;464
1.6.9.4.3;15.4.3 Electron Tunneling Through Thin Insulating Films;466
1.6.9.5;15.5 Mechanical Properties;468
1.6.9.6;15.6 Electrical Properties;472
1.6.9.7;15.7 Conclusions and Future Directions;477
1.6.9.8;References;479
1.6.10;Chapter 16 Assessment of Nanoadhesion and Nanofriction Properties of Formulated Cellulose-Based Biopolymers by AFM;486
1.6.10.1;16.1 Introduction;486
1.6.10.2;16.2 Application of Cellulose-Based Biopolymers in Pharmaceutical Formulations;487
1.6.10.3;16.3 General Composition of Pharmaceutical Film Coatings;488
1.6.10.3.1;16.3.1 Plasticizers;488
1.6.10.3.2;16.3.2 Surfactants and Lubricants;489
1.6.10.4;16.4 Structure and Bulk Properties of HPMC Biopolymers;490
1.6.10.4.1;16.4.1 Chemical Structure of HPMC;490
1.6.10.4.2;16.4.2 Physicochemical Properties;491
1.6.10.5;16.5 Physicochemical Properties of HPMC-Formulated Films;494
1.6.10.5.1;16.5.1 Materials;494
1.6.10.5.2;16.5.2 Pure HPMC Film Formation;495
1.6.10.5.3;16.5.3 Formulation of HPMC–Stearic Acid Films and HPMC–PEG Films;495
1.6.10.5.4;16.5.4 Thermomechanical Properties of HPMC–PEG Films;496
1.6.10.5.5;16.5.5 Thermo-Mechanical Properties of HPMC–SA Films;496
1.6.10.6;16.6 Surface Properties of HPMC-Formulated Films Adhesion;499
1.6.10.6.1;16.6.1 Surface Topography and Morphologies by AFM;499
1.6.10.6.1.1;16.6.1.1 Surface Imaging of Pure HPMC Film;499
1.6.10.6.1.2;16.6.1.2 Surface Imaging of HPMC–PEG Films;501
1.6.10.6.1.3;16.6.1.3 Surface Imaging of HPMC–SA Films;502
1.6.10.6.2;16.6.2 AFM Force–Distance Experiments;503
1.6.10.6.2.1;16.6.2.1 Nanoadhesion Force;505
1.6.10.6.2.2;16.6.2.2 Capillary Contribution to Nanoadhesion Force;506
1.6.10.6.3;16.6.3 LFM Nanofriction Experiments;509
1.6.10.6.3.1;16.6.3.1 Nano Friction Force;510
1.6.10.6.3.2;16.6.3.2 Interplay Between Nanoadhesion and Nanofriction;512
1.6.10.7;16.7 Conclusions;515
1.6.10.8;References;516
1.6.11;Chapter 17 Surface Growth Processes Induced by AFM Debris Production. A New Observable for Nanowear;518
1.6.11.1;17.1 Introduction;518
1.6.11.2;17.2 Single Asperity Nanowear Experiments;520
1.6.11.2.1;17.2.1 Surface Growth Processes Induced by AFM Tip: Experimental Results;524
1.6.11.3;17.3 A Model for Wear Debris Production in a UHV AFM Scratching Test;526
1.6.11.3.1;17.3.1 Localisation of the Free Energy ChangesDue to Stressing AFM Tip;527
1.6.11.3.2;17.3.2 Flux of Adatoms Induced by the AFM Stressing Tip;529
1.6.11.3.3;17.3.3 Evaluation of Number Cluster Density via Nucleation Theory;532
1.6.11.4;17.4 Continuum Approach for the Surface Growth Induced by Abrasive Adatoms;536
1.6.11.5;17.5 Conclusions and Future Perspectives;542
1.6.11.6;References;543
1.6.12;Chapter 18 Frictional Stick-Slip Dynamics in a Deformable Potential;545
1.6.12.1;18.1 Introduction;545
1.6.12.2;18.2 The Model and Equation of motion;547
1.6.12.2.1;18.2.1 Potential and geometry;547
1.6.12.2.2;18.2.2 Frictional Force and Static Friction as a Function of the Shape Parameter;549
1.6.12.2.3;18.2.3 Equation of Motion;550
1.6.12.3;18.3 Numerical Results;552
1.6.12.3.1;18.3.1 Phase Space and Stroboscopic Observation;552
1.6.12.3.2;18.3.2 Stick-Slip Phenomena;553
1.6.12.3.3;18.3.3 Influence of the Shape Parameter on the Transition from Stick-Slip Motion to Modulated Sliding State;556
1.6.12.4;18.4 Pure Dry Friction;557
1.6.12.5;18.5 Conclusion;560
1.6.12.6;References;560
1.6.13;Chapter 19 Capillary Adhesion and Nanoscale Properties of Water;562
1.6.13.1;19.1 Introduction;562
1.6.13.2;19.2 Metastable Liquid Capillary Bridges;564
1.6.13.2.1;19.2.1 Negative Pressure in Water;564
1.6.13.2.2;19.2.2 Negative Pressure in Capillary Bridges in AFM Experiments;566
1.6.13.2.3;19.2.3 Disjoining Pressure;568
1.6.13.2.4;19.2.4 Calculating Pressure in Capillary Bridges;569
1.6.13.3;19.3 Capillarity-Induced Low-Temperature Boiling;572
1.6.13.4;19.4 Room Temperature Ice in Capillary Bridges;574
1.6.13.4.1;19.4.1 Humidity Dependence of the Adhesion Force;574
1.6.13.4.2;19.4.2 Ice in the Capillary Bridges;576
1.6.13.4.3;19.4.3 Water Phase Behavior Near a Surfaceand in Confinement;577
1.6.13.5;19.5 Conclusions;579
1.6.13.6;References;579
1.6.14;Chapter 20 On the Sensitivity of the Capillary Adhesion Force to the Surface Roughness;583
1.6.14.1;20.1 Introduction;583
1.6.14.2;20.2 Capillary Force Between Rough Surfaces;585
1.6.14.2.1;20.2.1 Shape of the Meniscus;586
1.6.14.2.2;20.2.2 Capillary Force;588
1.6.14.3;20.3 Case-Study: Two-Tiered Roughness;591
1.6.14.4;20.4 Experimental Data;592
1.6.14.5;20.5 Conclusions;595
1.6.14.6;References;596
1.7;Part III Industrial Applications;597
1.7.1;Chapter 21 Nanoimaging, Molecular Interaction, and Nanotemplating of Human Rhinovirus;598
1.7.1.1;21.1 Introduction;598
1.7.1.2;21.2 Contact Mode AFM Imaging;599
1.7.1.3;21.3 Dynamic Force Microscopy Imaging;602
1.7.1.3.1;21.3.1 Magnetic AC Mode (MAC mode) AFM Imaging;603
1.7.1.4;21.4 Introduction to Molecular RecognitionForce Spectroscopy;605
1.7.1.4.1;21.4.1 AFM Tip Chemistry;606
1.7.1.4.2;21.4.2 Applications of Molecular RecognitionForce Spectroscopy;609
1.7.1.4.3;21.4.3 Topography and Recognition Imaging;612
1.7.1.5;21.5 Nanolithography;614
1.7.1.5.1;21.5.1 Applications of Nanolithography;614
1.7.1.5.1.1;21.5.1.1 Fabrication of Nanoarrays;615
1.7.1.5.1.2;21.5.1.2 Nanoshaving;616
1.7.1.5.1.3;21.5.1.3 Nanografting;618
1.7.1.5.2;21.5.2 Native Protein Nanolithography;620
1.7.1.6;21.6 Imaging and Force Measurements of Virus–ReceptorInteractions;621
1.7.1.6.1;21.6.1 Virus Particle Immobilization and Characterization;622
1.7.1.6.2;21.6.2 Virus–Receptor Interaction Analyzed by Molecular Recognition Force Spectroscopy;628
1.7.1.6.2.1;21.6.2.1 Theoretical Description;629
1.7.1.6.2.2;21.6.2.2 Unbinding Force Measurements of HRV2–VLDLR Interaction;630
1.7.1.6.2.3;21.6.2.3 Dynamic Force Spectroscopy;632
1.7.1.6.2.4;21.6.2.4 Kinetic On-Rate Constant Obtained from Force Measurements;633
1.7.1.6.3;21.6.3 Virus Immobilization on Receptor Arrays;633
1.7.1.6.3.1;21.6.3.1 Receptor Arrays for Selective and Efficient Capturing of Viral Particles;634
1.7.1.6.3.2;21.6.3.2 Atomic Force Microscopy-Derived Nanoscale Chip for Detecting Human Pathogenic Viruses;636
1.7.1.7;References;642
1.7.2;Chapter 22 Biomimetic Tailoring of the Surface Properties of Polymers at the Nanoscale: Medical Applications;653
1.7.2.1;22.1 Introduction;653
1.7.2.1.1;22.1.1 Biomimetic Material Design Criteria for Biomedical Applications;653
1.7.2.1.2;22.1.2 Techniques for the Characterization of Surfaces at the Nanoscale;656
1.7.2.2;22.2 Realization of Biomimetic Surfaces by Coating Strategies;661
1.7.2.2.1;22.2.1 Generalities;661
1.7.2.2.2;22.2.2 Coating Methods;663
1.7.2.2.2.1;22.2.2.1 Langmuir–Blodgett Films;663
1.7.2.2.2.2;22.2.2.2 Self-Assembled Monolayers;666
1.7.2.2.2.3;22.2.2.3 Layer-by-Layer Coating;668
1.7.2.2.2.4;22.2.2.4 Surface Biomineralization;670
1.7.2.3;22.3 Realization of Biomimetic Surfaces by Chemical Modification;672
1.7.2.3.1;22.3.1 Introduction of Functional Groups on Polymer Surfaces by Irradiation and Chemical Techniques;674
1.7.2.3.1.1;22.3.1.1 Plasma-Surface Modification of Polymers;674
1.7.2.3.1.2;22.3.1.2 Plasma-Grafting Polymerization;675
1.7.2.3.1.3;22.3.1.3 UV Irradiation;675
1.7.2.3.1.4;22.3.1.4 Hydrolysis and Aminolysis;676
1.7.2.3.2;22.3.2 Immobilization of Bioactive and BiomimeticCompounds;676
1.7.2.3.2.1;22.3.2.1 Biomimetic Surfaces by Chemical Modification;676
1.7.2.3.3;22.3.3 Not-Conventional Approaches Towards Nanoscale Tailoring of Biomimetic Surfaces;677
1.7.2.4;22.4 Scanning Probe Techniques for Optical and Spectroscopic Characterization of Surfacesat High Resolution;680
1.7.2.4.1;22.4.1 Dynamic-Mode AFM for the Characterization of Organosilane Self-Assembled Monolayers;680
1.7.2.4.2;22.4.2 SNOM for Fluorescence Imaging;684
1.7.2.4.3;22.4.3 TERS for Chemical Mapping at the Nanoscale;688
1.7.2.5;22.5 Conclusions;692
1.7.2.6;References;692
1.7.3;Chapter 23 Conductive Atomic-Force Microscopy Investigation of Nanostructures in Microelectronics;698
1.7.3.1;23.1 Introduction;698
1.7.3.2;23.2 Technical Implementation of C-AFM;700
1.7.3.3;23.3 C-AFM to Study Gate Dielectrics;704
1.7.3.3.1;23.3.1 Local Current–Voltage Characteristics, Dielectric Breakdown, and Two-Dimensional Current Maps;705
1.7.3.3.2;23.3.2 Investigation of High-k Dielectrics;708
1.7.3.4;23.4 Conductivity Measurements of Phase-Separated Semiconductor Nanostructures;710
1.7.3.4.1;23.4.1 Exploration of Supported Nanowires and Nanodots;711
1.7.3.4.1.1;23.4.1.1 C-AFM of InAs NW on GaAs(110);711
1.7.3.4.1.2;23.4.1.2 C-AFM of InAs ND on GaAs(110);713
1.7.3.4.2;23.4.2 Investigation of Defects in Ternary Semiconductor Alloys;714
1.7.3.5;23.5 C-AFM Investigations of Nanorods;716
1.7.3.6;23.6 Application of C-AFM to Electroceramics;721
1.7.3.7;23.7 Outlook to Photoconductive AFM;723
1.7.3.8;23.8 Overall Summary and Perspectives;724
1.7.3.9;References;725
1.7.4;Chapter 24 Microscopic Electrical Characterization of Inorganic Semiconductor-Based Solar Cell Materials and Devices Using AFM-Based Techniques;729
1.7.4.1;24.1 Introduction;729
1.7.4.2;24.2 AFM-Based Nanoelectrical Characterization Techniques;731
1.7.4.2.1;24.2.1 Scanning Probe Force Microscopy;731
1.7.4.2.2;24.2.2 Scanning Capacitance Microscopy;734
1.7.4.2.3;24.2.3 Conductive AFM;737
1.7.4.3;24.3 Characterization of Junctions of Solar Cells;738
1.7.4.3.1;24.3.1 Junction Location Determination;738
1.7.4.3.1.1;24.3.1.1 Junction Identification in Multicrystalline Si Solar Cells ;739
1.7.4.3.1.2;24.3.1.2 Junction Backshift in a GaInNAs Cell ;743
1.7.4.3.1.3;24.3.1.3 Junction Location in Cu(In,Ga)Se2 Cells ;748
1.7.4.3.2;24.3.2 Electrical Potential and Field on Junctions;751
1.7.4.3.2.1;24.3.2.1 Electric Field Uniformity in a-Si:H and a-SiGe:H Cells ;752
1.7.4.3.2.2;24.3.2.2 Potential Profiles in III–V Single- and Multiple-Junction Cells ;756
1.7.4.4;24.4 Characterization of Grain Boundaries of Polycrystalline Materials;764
1.7.4.4.1;24.4.1 Carrier Depletion and Grain Misorientation on Individual Grain Boundaries of Polycrystalline Si Thin Films;765
1.7.4.4.1.1;24.4.1.1 Probing Carrier Depletion on Grain Boundaries of Polycrystalline Si Thin Films Using SCM ;765
1.7.4.4.1.2;24.4.1.2 Comparison of Carrier Depletion and Grain Misorientation on Individual Grain Boundaries of PolycrystallineSi Thin Films ;769
1.7.4.4.2;24.4.2 Electrical Potential Barrier on Grain Boundaries of Chalcopyrite Thin Films;771
1.7.4.4.2.1;24.4.2.1 Measurement of Electrical Potential on the GrainBoundaries ;772
1.7.4.4.2.2;24.4.2.2 Na Impurity in the Grain Boundaries ;775
1.7.4.5;24.5 Localized Structural and Electrical Propertiesof nc-Si:H and a-Si:H Thin Films and Devices;777
1.7.4.5.1;24.5.1 Localized Electrical Properties of a-Si:H and nc-Si:H Mixed-Phase Devices;778
1.7.4.5.1.1;24.5.1.1 Localized Photovoltage on a-Si:H and nc-Si:H Mixed-Phase Devices ;778
1.7.4.5.1.2;24.5.1.2 Effects of Light-Soaking and Thermal Annealing on Local Conductivity of nc-Si:H ;782
1.7.4.5.2;24.5.2 Doping Effects on nc-Si:H Phase Formation;785
1.7.4.5.2.1;24.5.2.1 Phosphorus and Boron Doping Effects ;786
1.7.4.5.2.2;24.5.2.2 Film Growth Mechanisms ;789
1.7.4.6;24.6 Summary;790
1.7.4.7;References;792
1.7.5;Chapter 25 Micro and Nanodevices for Thermoelectric Converters;797
1.7.5.1;25.1 Introduction;797
1.7.5.1.1;25.1.1 Macrodevices;798
1.7.5.1.2;25.1.2 Microdevices;799
1.7.5.1.3;25.1.3 Nanodevices and Superlattices;801
1.7.5.2;25.2 Thermoelectric Converters Models;803
1.7.5.2.1;25.2.1 Peltier Effect on Hot and Cold Sides;806
1.7.5.2.2;25.2.2 Joule Heating;807
1.7.5.3;25.3 Thin-Films Technology for Thermoelectric Materials;808
1.7.5.3.1;25.3.1 Bismuth and Antimony Tellurides Depositions;810
1.7.5.3.2;25.3.2 Optimization of Thermoelectric Properties;814
1.7.5.4;25.4 Superlattices for Fabrication of ThermoelectricConverters;815
1.7.5.4.1;25.4.1 Why Superlattices?;815
1.7.5.4.2;25.4.2 Materials and Properties;816
1.7.5.4.3;25.4.3 Fabrication;816
1.7.5.5;References;817
1.8;Index;819