Bhushan | Biomimetics | E-Book | sack.de
E-Book

E-Book, Englisch, Band 279, 995 Seiten, eBook

Reihe: Springer Series in Materials Science

Bhushan Biomimetics

Bioinspired Hierarchical-Structured Surfaces for Green Science and Technology
3rd Auflage 2018
ISBN: 978-3-319-71676-3
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

Bioinspired Hierarchical-Structured Surfaces for Green Science and Technology

E-Book, Englisch, Band 279, 995 Seiten, eBook

Reihe: Springer Series in Materials Science

ISBN: 978-3-319-71676-3
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book presents an overview of the general field of biomimetics and biologically inspired, hierarchically structured surfaces. It deals with various examples of biomimetics, which include surfaces with roughness-induced super-phobicity/philicity, self-cleaning, antifouling, low drag, low/high/reversible adhesion, drag reduction in fluid flow, reversible adhesion, surfaces with high hardness and mechanical toughness, vivid colors produced structurally without color pigments, self-healing, water harvesting and purification, and insect locomotion and stinging. The focus in the book is on the Lotus Effect, Salvinia Effect, Rose Petal Effect, Superoleophobic/philic Surfaces, Shark Skin and Skimmer Bird Effect, Rice Leaf and Butterfly Wing Effect, Gecko Adhesion, Insects Locomotion and Stinging, Self-healing Materials, Nacre, Structural Coloration, and Nanofabrication. This is the first book of this kind on bioinspired surfaces, and the third edition represents a significant expansion from the previous two editions.

Bhushan Biomimetics jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Chapter 1. Introduction (Revised)1.1. Introduction1.2. Biodiversity1.3. Lessons from Nature1.4. Golden Ratio and Fibonacci Numbers1.5. Biomimetics in Art and Architecture – Bioarchitecture1.6. Industrial Significance1.7. Research Objective and Approach1.8. Organization of the Book Chapter 2. Roughness-Induced Superliquiphilic/phobic Surfaces: Lessons from Nature (Revised)2.1. Introduction2.2. Wetting States2.3. Applications2.4. Natural Superhydrophobic, Self-Cleaning, Low Adhesion/Drag Reduction Surfaces with Antifouling2.5. Natural Superhydrophobic and High Adhesion Surfaces2.6. Natural Superoleophobic Self-Cleaning and Low Drag Surfaces with Antifouling2.7. ClosureChapter 3. Modeling of Contact Angle for a Liquid in Contact with a Rough Surface for Various Wetting Regimes (Revised)3.1. Introduction3.2. Contact Angle Definition3.3. Homogenous and Heterogeneous Interfaces and the Wenzel, Cassie-Baxter and Cassie Equations3.3.1. Limitations of the Wenzel and Cassie-Baxter Equations3.3.2. Range of Applicability of the Wenzel and Cassie-Baxter Equations3.4. Contact Angle Hysteresis3.5. Stability of a Composite Interface and Role of Hierarchical Structure with Convex Surfaces3.6. The Cassie-Baxter and Wenzel Wetting Regime Transition3.7. ClosureChapter 4. Lotus Effect Surfaces in Nature (Revised)4.1. Introduction4.2. Plant Leaves4.3. Characterization of Superhydrophobic and Hydrophilic Leaf Surfaces4.3.1. Experimental Techniques4.32. SEM Micrographs 4.3.3. Contact Angle Measurements 4.3.4. Surface Characterization Using an Optical Profiler4.3.5. Surface Characterization, Adhesion, and Friction Using an AFM4.3.6. Role of the Hierarchical Roughness 4.3.7. Summary 4.4. Various Self-cleaning Approaches4.4.1. Comparison between Superhydrophobic and Superhydrophilic Surface Approaches for Self-cleaning4.4.2. Summary 4.5. ClosureChapter 5. Fabrication Techniques used for Superliquiphilic/phobic Structures (Revised)5.1. Introduction5.2. Roughening to Create One-Level Structure 5.3. Coatings to Create One-Level Structures5.4. Methods to Create Two-Level (Hierarchical) Structures5.5. Etching Techniques for Attachment of Coatings5.6. ClosureChapter 6. Strategies of Micro-, Nano- and Hierarchically Structured Lotus-like Surfaces (Revised)6.1. Introduction6.2. Experimental Techniques6.2.1. Contact Angle, Surface Roughness, and Adhesion6.2.2. Droplet Evaporation Studies 6.2.3. Bouncing Droplet Studies6.2.4. Vibrating Droplet Studies6.2.5. Microdroplet Condensation and Evaporation Studies using ESEM6.2.6. Generation of Submicron Droplets6.3. Micro- and Nanopatterned Polymers6.3.1. Contact Angle6.3.2. Effect of Submicron Droplet on Contact Angle6.3.3. Adhesive Force6.3.4. Summary6.4. Micropatterned Si Surfaces6.4.1. Cassie-Baxter and Wenzel Transition Criteria 6.4.2. Effect of Pitch Value on the Transition6.4.3. Observation of Transition during the Droplet Evaporation6.4.4. Another Cassie-Baxter and Wenzel Transition for Different Series6.4.5. Contact Angle Hysteresis and Wetting/Dewetting Asymmetry6.4.6. Contact Angle Measurements During Condensation and Evaporation of Microdroplets on Micropatterned Surfaces6.4.7. Observation of Transition during the Bouncing Droplet6.4.8. Summary6.5. Ideal Surfaces with Hierarchical Structure6.6. Hierarchically Structured Surfaces with Wax Platelets and Tubules using Nature’s Route6.6.1. Effect of Nanostructures with Various Wax Platelet Crystal Densities on Superhydrophobicity6.6.2. Effect of Hierarchical Structure with Wax Platelets on the Superhydrophobicity6.6.3. Effect of Hierarchical Structure with Wax Tubules on Superhydrophobicity6.6.4. Self-Cleaning Efficiency of Hierarchically Structured Surfaces6.6.5. Observation of Transition during the Bouncing Droplet6.6.6. Observation of Transition during the Vibrating Droplet6.6.7. Measurement of Fluid Drag Reduction 6.6.8. SummaryChapter 7. Fabrication and Characterization of Mechanically Durable Superhydrophobic Surfaces (Revised)7.1. Introduction7.2. Experimental Techniques7.2.1. Waterfall/Jet Tests7.2.2. Wear and Friction Tests7.2.3. Transmittance Measurements7.3. CNT Composites7.4. Nanoparticle Composites with Hierarchical Structure7.5. Nanoparticle Composites for Optical Transparency7.6. Deep Reactive Ion Etched Surfaces for Optical Transparency7.7. Superhydrophobic Paper Surfaces7.8. ClosureChapter 8. Fabrication and Characterization of Micropatterned Structures Inspired by Salvinia Molesta8.1. Introduction8.2. Characterization of Leaves and Fabrication of Inspired Structural Surfaces8.3. Measurement of Contact Angle and Adhesion8.3.1. Observation of Pinning and Contact Angle8.3.2. Adhesion8.4. ClosureChapter 9. Characterization of Rose Petals and Fabrication and Characterization of Superhydrophobic Surfaces with High and Low Adhesion9.1. Introduction9.2. Characterization of Two Kinds of Rose Petals and Their Underlying Mechanisms9.3. Fabrication of Surfaces with High and Low Adhesion for Understanding of Rose Petal Effect9.4. Fabrication of Mechanically Durable, Superhydrophobic Surfaces with High Adhesion9.4.1. Samples with Hydrophilic ZnO Nanoparticles (Before ODP Modification)9.4.2. Samples with Hydrophobic ZnO Nanoparticles (After ODP Modification)9.4.3. Wear Resistance in AFM Wear Experiment9.5. ClosureChapter 10. Modeling and Strategies of Superoleophobic/philic Surfaces (Revised)10.1. Introduction10.2. Strategies to Achieve Superoleophobicity in Air10.2.1. Fluorination Techniques10.2.2. Re-entrant Geometry10.3. Model to Predict Oleophobic/philic Nature of Surfaces10.4. Validation of Oleophobicity/philicity Model for Oil Droplets in Air and Water10.4.1. Experimental Techniques10.4.2. Fabrication of Oleophobic/philic Surfaces10.4.3. Characterization of Oleophobic/philic Surfaces10.4.4. SummaryChapter 11. Fabrication and Characterization of Superoleophilic/phobic Surfaces (Revised)11.1. Introduction11.2. Nanoparticle Composite Coatings for Superliquiphilicity/phobicity11.2.1. Experimental Details11.2.2. Results and Discussion11.2.3. Summary11.3. Nanoparticle Composite Coatings for Superliquiphilicity and Superliquiphobicity Using Layer-by-Layer Technique11.3.1. Experimental Details11.3.2. Results and discussion11.3.3. Summary11.4. Superoleophobic Polymer Surfaces11.4.1. Experimental Details11.4.2. Results and Discussion11.4.3. Summary11.5. Superoleophobic Aluminum Surfaces11.2.1. Experimental Details11.2.2. Results and Discussion11.2.3. Summary11.6. ClosureChapter 12. Shark-Skin Surface for Fluid-Drag Reduction in Turbulent Flow (Revised)12.1. Introduction12.2. Fluid Drag Reduction12.2.1. Mechanisms of Fluid Drag12.2.2. Shark Skin12.3. Fluid Flow Modeling12.3.1. Riblet Geometry Models12.3.2. Results and Discussion12.3.3. Summary12.4. Experimental Studies 12.4.1. Flow Visualization Studies12.4.2. Riblet Geometries and Configurations12.4.3. Riblet Fabrication12.4.4. Riblet Scale-up Fabrication12.4.5. Drag Measurement Techniques12.4.6. Riblet Results and Discussion12.4.7. Summary12.5. Application of Riblets for Drag Reduction and Antifouling12.6. ClosureChapter 13. Black Skimmer Surfaces for Fluid-Drag Reduction in Turbulent Flow (New)13.1. Introduction13.2. Fluid Flow Modeling13.3. Experimental Studies13.4. ClosureChapter 14. Rice Leaf and Butterfly Wing Effect 14.1. Introduction14.2. Inspiration from Living Nature14.2.1. Ambient Species – Lotus Effect14.2.2. Aquatic Species – Shark Skin and Fish Scales Effect14.2.3. Ambient Species – Rice Leaf and Butterfly Wing Effect14.3. Sample Fabrication 14.3.1. Actual Sample Replicas14.3.2. Rice Leaf Inspired Surfaces14.4. Pressure Drop Measurement Technique14.5. Results and Discussion14.5.1. Surface Characterization14.5.2. Pressure Drop Measurements 14.5.3. Wettability14.5.4. Drag Reduction Models14.6. ClosureChapter 15. Bio- and Inorganic Fouling (Revised)15.1. Introduction15.2. Fields Susceptible to Fouling15.3. Biofouling and Inorganic Fouling Formation Mechanisms15.3.1. Biofouling Formation15.3.2. Inorganic Fouling Formation15.3.3. Surface Factors15.4. Antifouling Strategies from Living Nature15.5. Antifouling: Current Prevention and Cleaning Techniques15.5.1. Prevention Techniques15.5.2. Self-cleaning Surfaces and Cleaning Techniques15.6. Bioinspired Rice Leaf Surfaces for Antifouling15.6.1. Fabrication of Micropatterned Samples15.6.2. Anti-biofouling Measurements15.6.3. Anti-inorganic Fouling Measurements15.6.4. Results and Discussion15.6.5. Anti-biofouling and Anti-inorganic Fouling Mechanisms15.7. ClosureChapter 16. Gecko Adhesion16.1. Introduction16.2. Hairy Attachment Systems16.3. Tokay Gecko16.3.1. Construction of Tokay Gecko16.3.2. Adhesion Enhancement by Division of Contacts and Multilevel Hierarchical Structure16.3.3. Peeling16.3.4. Self-Cleaning16.4. Attachment Mechanisms16.4.1. van der Waals Forces16.4.2. Capillary Forces16.5. Adhesion Measurements and Data16.5.1. Adhesion under Ambient Conditions16.5.2. Effects of Temperature16.5.3. Effects of Humidity16.5.4. Effects of Hydrophobicity16.6. Adhesion Modeling of Fibrillar Structures16.6.1. Single Spring Contact Analysis 16.6.2. The Multi-Level Hierarchical Spring Analysis 16.6.3. Adhesion Results of the Multi-level Hierarchical Spring Model16.6.4. Capillary Effects16.7. Adhesion Data Base of Fibrillar Structures16.7.1. Fiber Model 16.7.2. Single Fiber Contact Analysis 16.7.3. Constraints 16.7.4. Numerical Simulation 16.7.5. Results and Discussion16.8. Fabrication of Gecko Skin-Inspired Structures16.8.1. Single Level Roughness Structures16.8.2. Multi-Level Hierarchical Structures16.9. ClosureChapter 17. Structure and Mechanical Properties of Nacre 17.1. Introduction 17.2. Hierarchical Structure17.2.1. Columnar and Sheet Structure17.2.2. Mineral Bridges17.2.3. Polygonal Nanograins17.2.4. Inter-tile Toughening Mechanism17.3. Mechanical Properties 17.4. Bioinspired Structures17.5. ClosureChapter 18. Structural Coloration18.1. Introduction 18.2. Physical Mechanisms of Structural Colors 18.2.1. Film Interference18.2.2. Diffraction Gratings18.2.3. Scattering18.2.4. Photonic Crystals18.2.5. Coloration Changes18.3. Lessons from Living Nature18.3.1. Film interference18.3.2. Diffraction Grating18.3.3. Scattering18.3.4. Photonic Crystals18.3.5. Coloration Changes18.4. Bioinspired Fabrication and Applications18.5. ClosureChapter 19. Self-Healing Materials (NEW) 19.1 xxxxxx19.2 xxxxxx19.3 xxxxxxChapter 20. Structures for Water Harvesting20.1 xxxxxx20.2 xxxxxx20.3 xxxxxxChapter 21. Outlook (Revised)Appendix A. Gas Nanobubbles and Fluid Slip in Liquiphobic SurfacesSubject Index (to be prepared by production staff) Bio and Photograph of Author


Dr. Bharat Bhushan is an Ohio Eminent Scholar and The Howard D. Winbigler Professor in the College of Engineering, and the Director of the Nanoprobe Laboratory for Bio- & Nanotechnology and Biomimetics (NLB) and affiliated faculty in John Glenn College of Public Affairs at the Ohio State University, Columbus, Ohio. In 2013-14, he served as an ASME/AAAS Science & Technology Policy Fellow, House Committee on Science, Space & Technology, United States Congress, Washington, DC. He holds two M.S., a Ph.D. in mechanical engineering/mechanics, an MBA, and two honorary and two semi-honorary doctorates. His research interests include fundamental studies with a focus on scanning probe techniques in the interdisciplinary areas of bio/nanotribology, bio/nanomechanics and bio/nanomaterials characterization and applications to bio/nanotechnology, and biomimetics. He has authored 8 scientific books, 90+ handbook chapters,  800+ scientific papers (h index–76+; ISI Highly Cited Researcher in Materials Science since 2007 and in Biology and Biochemistry since 2013; ISI Top 5% Cited Authors for Journals in Chemistry since 2011), and 60+ scientific reports. He has also edited 50+ books and holds 20 U.S. and foreign patents. He is co-editor of Springer NanoScience and Technology Series and Microsystem Technologies, and member of editorial board of PNAS. He has organized various international conferences and workshops.  He is the recipient of numerous prestigious awards and international fellowships including the Alexander von Humboldt Research Prize for Senior Scientists, Max Planck Foundation Research Award for Outstanding Foreign Scientists, Fulbright Senior Scholar Award, Life Achievement Tribology Award, and Institution of Chemical Engineers (UK) Global Award.  His research was listed as the top ten science stories of 2015. He is a member of various professional societies, including the International Academy of Engineering (Russia). He has previously worked for various research labs including IBM Almaden Research Center, San Jose, CA. He has held visiting professorship at University of California at Berkeley, University of Cambridge, UK, Technical University Vienna, Austria, University of Paris, Orsay, ETH Zurich, EPFL Lausanne, Univ. of Southampton, UK, Univ. of Kragujevac, Serbia, Tsinghua Univ., China, Harbin Inst., China, and KFUPM, Saudi Arabia.   



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.