Bhushan | Biomimetics | E-Book | www2.sack.de
E-Book

E-Book, Englisch, Band 279, 995 Seiten

Reihe: Springer Series in Materials Science

Bhushan Biomimetics

Bioinspired Hierarchical-Structured Surfaces for Green Science and Technology
3rd Auflage 2018
ISBN: 978-3-319-71676-3
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

Bioinspired Hierarchical-Structured Surfaces for Green Science and Technology

E-Book, Englisch, Band 279, 995 Seiten

Reihe: Springer Series in Materials Science

ISBN: 978-3-319-71676-3
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book presents an overview of the general field of biomimetics and biologically inspired, hierarchically structured surfaces.  It deals with various examples of biomimetics, which include surfaces with roughness-induced super-phobicity/philicity, self-cleaning, antifouling, low drag, low/high/reversible adhesion, drag reduction in fluid flow, reversible adhesion, surfaces with high hardness and mechanical toughness, vivid colors produced structurally without color pigments, self-healing, water harvesting and purification, and insect locomotion and stinging.  The focus in the book is on the Lotus Effect, Salvinia Effect, Rose Petal Effect, Superoleophobic/philic Surfaces, Shark Skin and Skimmer Bird Effect, Rice Leaf and Butterfly Wing Effect, Gecko Adhesion, Insects Locomotion and Stinging, Self-healing Materials, Nacre, Structural Coloration, and Nanofabrication.  This is the first book of this kind on bioinspired surfaces, and the third edition represents a significant expansion from the previous two editions.


Dr. Bharat Bhushan is an Ohio Eminent Scholar and The Howard D. Winbigler Professor in the College of Engineering, and the Director of the Nanoprobe Laboratory for Bio- & Nanotechnology and Biomimetics (NLB2) and affiliated faculty in John Glenn College of Public Affairs at the Ohio State University, Columbus, Ohio. In 2013-14, he served as an ASME/AAAS Science & Technology Policy Fellow, House Committee on Science, Space & Technology, United States Congress, Washington, DC. He holds two M.S., a Ph.D. in mechanical engineering/mechanics, an MBA, and two honorary and two semi-honorary doctorates. His research interests include fundamental studies with a focus on scanning probe techniques in the interdisciplinary areas of bio/nanotribology, bio/nanomechanics and bio/nanomaterials characterization and applications to bio/nanotechnology, and biomimetics. He has authored 8 scientific books, 90+ handbook chapters,  800+ scientific papers (h index-76+; ISI Highly Cited Researcher in Materials Science since 2007 and in Biology and Biochemistry since 2013; ISI Top 5% Cited Authors for Journals in Chemistry since 2011), and 60+ scientific reports. He has also edited 50+ books and holds 20 U.S. and foreign patents. He is co-editor of Springer NanoScience and Technology Series and Microsystem Technologies, and member of editorial board of PNAS. He has organized various international conferences and workshops.  He is the recipient of numerous prestigious awards and international fellowships including the Alexander von Humboldt Research Prize for Senior Scientists, Max Planck Foundation Research Award for Outstanding Foreign Scientists, Fulbright Senior Scholar Award, Life Achievement Tribology Award, and Institution of Chemical Engineers (UK) Global Award.  His research was listed as the top ten science stories of 2015. He is a member of various professional societies, including the International Academy of Engineering (Russia). He has previously worked for various research labs including IBM Almaden Research Center, San Jose, CA. He has held visiting professorship at University of California at Berkeley, University of Cambridge, UK, Technical University Vienna, Austria, University of Paris, Orsay, ETH Zurich, EPFL Lausanne, Univ. of Southampton, UK, Univ. of Kragujevac, Serbia, Tsinghua Univ., China, Harbin Inst., China, and KFUPM, Saudi Arabia.   

Bhushan Biomimetics jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Foreword;8
2;Preface to the Third Edition;10
3;Preface to the First Edition;12
4;Contents;14
5;About the Author;27
6;1 Introduction;30
6.1;1.1 Biomimetics and Green Science and Technology;30
6.1.1;1.1.1 Climate Change and Lack of Recycling Impact on Sustainable Environment;32
6.1.2;1.1.2 Green Science and Technology;32
6.2;1.2 Biodiversity;33
6.3;1.3 Lessons from Living Nature;33
6.3.1;1.3.1 Bacteria;35
6.3.2;1.3.2 Plants;35
6.3.3;1.3.3 Insects, Spiders, Lizards, and Frogs;37
6.3.4;1.3.4 Aquatic Animals;38
6.3.5;1.3.5 Birds;39
6.3.6;1.3.6 Seashells, Bones, and Teeth;39
6.3.7;1.3.7 Spider Web;40
6.3.8;1.3.8 Insect Piercing;40
6.3.9;1.3.9 Eyes;40
6.3.10;1.3.10 Fur and Skin of Polar Bear;41
6.3.11;1.3.11 Anti-freeze Proteins (AFPs);41
6.3.12;1.3.12 Biological Systems;41
6.4;1.4 Locomotion in Living Nature;42
6.4.1;1.4.1 Walking;42
6.4.2;1.4.2 Gear Systems for Precise Movement;43
6.5;1.5 Golden Ratio and Fibonacci Numbers;45
6.6;1.6 Biomimetics and Bioinspiration in Art and Architecture—Bioarchitecture;49
6.6.1;1.6.1 Biomimetics in Arts and Architecture;50
6.6.2;1.6.2 Bioinspiration in Arts and Architecture;52
6.7;1.7 Industrial Applications;58
6.8;1.8 Economic Impact;61
6.9;1.9 Research Objective and Approach;62
6.10;1.10 Organization of the Book;63
6.11;References;63
7;2 Roughness-Induced Superliquiphilic/Phobic Surfaces: Wetting States and Lessons from Living Nature;68
7.1;2.1 Introduction;68
7.2;2.2 Wetting States;68
7.3;2.3 Applications;70
7.4;2.4 Natural Superhydrophobic, Self-cleaning, Low Adhesion/Drag Reduction Surfaces with Antifouling;72
7.5;2.5 Natural Superhydrophobic and High Adhesion Surfaces;74
7.6;2.6 Natural Superoleophobic Self-cleaning and Low Drag Surfaces with Antifouling;74
7.7;2.7 Closure;75
7.8;References;76
8;3 Modeling of Contact Angle for a Liquid in Contact with a Rough Surface for Various Wetting Regimes;79
8.1;3.1 Introduction;79
8.2;3.2 Contact Angle Definition;79
8.3;3.3 Homogeneous and Heterogeneous Interfaces and the Wenzel, Cassie-Baxter and Cassie Equations;81
8.3.1;3.3.1 Limitations of the Wenzel and Cassie-Baxter Equations;87
8.3.2;3.3.2 Range of Applicability of the Wenzel and Cassie-Baxter Equations;88
8.4;3.4 Contact Angle Hysteresis, Tilt Angle, and Energy Dissipation;92
8.5;3.5 Stability of a Composite Interface and Role of Hierarchical Structure with Convex Surfaces;96
8.6;3.6 The Cassie-Baxter and Wenzel Wetting Regime Transition;100
8.7;3.7 Closure;104
8.8;References;105
9;4 Plant Leaf Surfaces in Living Nature;109
9.1;4.1 Introduction;109
9.2;4.2 Plant Leaves;113
9.3;4.3 Characterization of Superhydrophobic and Hydrophilic Leaf Surfaces;116
9.3.1;4.3.1 Experimental Techniques;116
9.3.2;4.3.2 SEM Micrographs;117
9.3.3;4.3.3 Contact Angle Measurements;119
9.3.4;4.3.4 Surface Characterization Using an Optical Profiler;120
9.3.5;4.3.5 Surface Characterization, Adhesion, and Friction Using an AFM;122
9.3.5.1;4.3.5.1 Comparison of Two AFM Measurement Techniques;122
9.3.5.2;4.3.5.2 Surface Characterization;124
9.3.5.3;4.3.5.3 Adhesive Force and Friction;124
9.3.6;4.3.6 Role of the Hierarchical Roughness;128
9.3.7;4.3.7 Summary;130
9.4;4.4 Various Self-cleaning Approaches;130
9.4.1;4.4.1 Comparison Between Superhydrophobic and Superhydrophilic Surface Approaches for Self-cleaning;130
9.4.2;4.4.2 Summary;133
9.5;4.5 Closure;134
9.6;References;134
10;5 Nanofabrication Techniques Used for Superhydrophobic Surfaces;136
10.1;5.1 Introduction;136
10.2;5.2 Roughening to Create One-Level Structure;137
10.3;5.3 Coatings to Create One-Level Structures;141
10.4;5.4 Methods to Create Two-Level (Hierarchical) Structures;142
10.5;5.5 Closure;143
10.6;References;143
11;6 Strategies for Micropatterned, Nanopatterned, and Hierarchically Structured Lotus-like Surfaces;147
11.1;6.1 Introduction;147
11.2;6.2 Experimental Techniques;149
11.2.1;6.2.1 Contact Angle, Surface Roughness, and Adhesion;149
11.2.2;6.2.2 Droplet Evaporation Studies;149
11.2.3;6.2.3 Bouncing Droplet Studies;150
11.2.4;6.2.4 Vibrating Droplet Studies;150
11.2.5;6.2.5 Microdroplet Condensation and Evaporation Studies Using ESEM;150
11.2.6;6.2.6 Generation of Submicron Droplets;151
11.2.7;6.2.7 Self-cleaning Studies;154
11.3;6.3 Micro- and Nanopatterned Polymers;155
11.3.1;6.3.1 Contact Angle;156
11.3.2;6.3.2 Effect of Submicron Droplet on Contact Angle;158
11.3.3;6.3.3 Adhesive Force;159
11.3.4;6.3.4 Summary;160
11.4;6.4 Micropatterned Si Surfaces;161
11.4.1;6.4.1 Cassie-Baxter and Wenzel Transition Criteria;163
11.4.2;6.4.2 Effect of Pitch Value on the Transition;166
11.4.3;6.4.3 Observation of Transition During the Droplet Evaporation;167
11.4.4;6.4.4 Another Cassie-Baxter and Wenzel Transition for Different Series;171
11.4.5;6.4.5 Contact Angle Hysteresis and Wetting/Dewetting Asymmetry;173
11.4.6;6.4.6 Contact Angle Measurements During Condensation and Evaporation of Microdroplets on Micropatterned Surfaces;176
11.4.7;6.4.7 Observation of Transition During the Bouncing Droplet;179
11.4.8;6.4.8 Summary;184
11.5;6.5 Ideal Surfaces with Hierarchical Structure;185
11.6;6.6 Hierarchically Structured Surfaces with Wax Platelets and Tubules Using Nature’s Route;186
11.6.1;6.6.1 Effect of Nanostructures with Various Wax Platelet Crystal Densities on Superhydrophobicity;191
11.6.2;6.6.2 Effect of Hierarchical Structure with Wax Platelets on the Superhydrophobicity;195
11.6.3;6.6.3 Effect of Hierarchical Structure with Wax Tubules on Superhydrophobicity;199
11.6.3.1;6.6.3.1 T. Majus Tubules;199
11.6.3.2;6.6.3.2 Lotus Tubules;202
11.6.4;6.6.4 Self-cleaning Efficiency of Hierarchically Structured Surfaces;206
11.6.5;6.6.5 Observation of Transition During the Bouncing Droplet;208
11.6.6;6.6.6 Observation of Transition During the Vibrating Droplet;212
11.6.6.1;6.6.6.1 Model for the Adhesion and Inertia Forces of the Vibrating Droplet;212
11.6.6.2;6.6.6.2 Vibration Study Results;213
11.6.7;6.6.7 Measurement of Fluid Drag Reduction;218
11.6.8;6.6.8 Summary;218
11.7;6.7 Closure;219
11.8;References;220
12;7 Fabrication and Characterization of Mechanically Durable Superhydrophobic Surfaces;224
12.1;7.1 Introduction;224
12.2;7.2 Characterization Techniques;225
12.2.1;7.2.1 Mechanical Durability;225
12.2.2;7.2.2 Waterfall/Jet Tests;226
12.2.3;7.2.3 Optical Transmittance Measurements;227
12.3;7.3 Superhydrophobic Surfaces Using CNT Composites;227
12.3.1;7.3.1 Fabrication Details;227
12.3.2;7.3.2 Contact Angle;229
12.3.3;7.3.3 Durability of Various Surfaces in Waterfall/Jet Tests;230
12.3.4;7.3.4 Durability of Various Surfaces in AFM and Ball-on-Flat Tribometer Tests;231
12.3.5;7.3.5 Summary;236
12.4;7.4 Superhydrophobic Surfaces Using Nanoparticle Composites with Hierarchical Structure;236
12.4.1;7.4.1 Fabrication Details;236
12.4.2;7.4.2 Contact Angle of Surfaces Using Micropattern;238
12.4.3;7.4.3 Contact Angle of Surfaces Using Microparticles and Comparison to Micropatterns;239
12.4.4;7.4.4 Durability of Various Surfaces in AFM and Ball-on-Flat Tribometer Tests;241
12.4.5;7.4.5 Summary;244
12.5;7.5 Superhydrophobic Surfaces Using Nanoparticle Composites for Optical Transparency;244
12.5.1;7.5.1 Fabrication Details;246
12.5.2;7.5.2 Surface Roughness and Morphology;247
12.5.3;7.5.3 Contact Angle;248
12.5.4;7.5.4 Optical Transparency;248
12.5.5;7.5.5 Durability of Various Samples in AFM and Water Jet Tests;252
12.5.6;7.5.6 Summary;255
12.6;7.6 Superhydrophobic Surfaces Using Micropatterning, Nanoparticle Composite Coating and Ion Etching of PDMS for Optical Transparency;255
12.6.1;7.6.1 Micropatterning and Nanoparticle/Binder Coating;256
12.6.1.1;7.6.1.1 Fabrication Details;256
12.6.1.2;7.6.1.2 Contact Angle and Transmittance of Surfaces;258
12.6.1.3;7.6.1.3 Summary;259
12.6.2;7.6.2 Ion Etching;260
12.6.2.1;7.6.2.1 Fabrication Details;260
12.6.2.2;7.6.2.2 Surface Roughness and Morphology;261
12.6.2.3;7.6.2.3 Contact Angle and Transmittance of Surfaces;263
12.6.2.4;7.6.2.4 Durability in AFM Tests;265
12.6.2.5;7.6.2.5 Summary;266
12.7;7.7 Superhydrophobic Paper Surfaces;268
12.7.1;7.7.1 Fabrication Details;268
12.7.2;7.7.2 Contact Angle;269
12.7.3;7.7.3 Durability Test;270
12.7.4;7.7.4 Summary;270
12.8;7.8 Closure;270
12.9;References;270
13;8 Fabrication and Characterization of Micropatterned Structures Inspired by Salvinia molesta;274
13.1;8.1 Introduction;274
13.2;8.2 Characterization of Leaves and Fabrication of Inspired Structural Surfaces;275
13.3;8.3 Measurement of Contact Angle and Adhesion;278
13.3.1;8.3.1 Observation of Pinning and Contact Angle;278
13.3.2;8.3.2 Adhesion;279
13.4;8.4 Closure;281
13.5;References;282
14;9 Characterization of Rose Petals and Fabrication and Characterization of Superhydrophobic Surfaces with High and Low Adhesion;283
14.1;9.1 Introduction;283
14.2;9.2 Characterization of Two Kinds of Rose Petals and Their Underlying Mechanisms;284
14.3;9.3 Fabrication of Surfaces with High and Low Adhesion for Understanding of Rose Petal Effect;291
14.4;9.4 Fabrication of Mechanically Durable, Superhydrophobic Surfaces with High Adhesion;300
14.4.1;9.4.1 Samples with Hydrophilic ZnO Nanoparticles (Before ODP Modification);301
14.4.2;9.4.2 Samples with Hydrophobic ZnO Nanoparticles (After ODP Modification);305
14.4.3;9.4.3 Wear Resistance in AFM Wear Experiment;307
14.5;9.5 Closure;310
14.6;References;310
15;10 Strategies for Superliquiphobic/Philic Surfaces;312
15.1;10.1 Introduction;312
15.2;10.2 Oils and Surfactant-Containing Liquids;316
15.3;10.3 Strategies to Achieve Superoleophobicity in Air and Liquid Repellency;320
15.3.1;10.3.1 Roughness Techniques;322
15.3.2;10.3.2 Fluorination Techniques;324
15.3.2.1;10.3.2.1 Fluoropolymers;324
15.3.2.2;10.3.2.2 Fluorosilanes and Fluorothiols;324
15.3.2.3;10.3.2.3 Fluoroplasma;325
15.3.2.4;10.3.2.4 Fluorosurfactants (for Superhydrophilicity and Superoleophobicity);325
15.3.3;10.3.3 Chemical Activation of Underlayer of a Coated Surface;325
15.3.4;10.3.4 Re-entrant Geometry;328
15.3.5;10.3.5 Coating Deposition Techniques;331
15.3.6;10.3.6 Summary;331
15.4;10.4 Strategies to Achieve Combinations of Superliquiphilicity/Phobicity;331
15.5;10.5 Model to Predict Oleophobic/Philic Nature of Surfaces;332
15.6;10.6 Validation of Oleophobicity/Philicity Model for Oil Droplets in Air and Water;335
15.6.1;10.6.1 Experimental Techniques;335
15.6.2;10.6.2 Fabrication of Oleophobic/Philic Surfaces;336
15.6.3;10.6.3 Characterization of Oleophobic/Philic Surfaces;337
15.6.3.1;10.6.3.1 Wetting Behavior on Flat and Micropatterned Epoxy Surfaces;337
15.6.3.2;10.6.3.2 Wetting Behavior on Flat and Micropatterned Surfaces with C20F42;341
15.6.3.3;10.6.3.3 Wetting Behavior on Nano- and Hierarchical Structures and Shark Skin Replica;343
15.6.4;10.6.4 Summary;345
15.7;10.7 Closure;345
15.8;References;346
16;11 Adaptable Fabrication Techniques for Mechanically Durable Superliquiphobic/philic Surfaces;349
16.1;11.1 Introduction;349
16.2;11.2 Characterization Techniques;353
16.2.1;11.2.1 Contact Angle and Tilt Angle;353
16.2.2;11.2.2 Scanning Electron Microscope (SEM) Imaging;353
16.2.3;11.2.3 Coating Thickness;354
16.2.4;11.2.4 Surfactant-Containing Liquid Repellency;354
16.2.5;11.2.5 High Temperature Superliquiphobicity;354
16.2.6;11.2.6 Wear Resistance;355
16.2.6.1;11.2.6.1 Macroscale Wear;355
16.2.6.2;11.2.6.2 Microscale Wear;355
16.2.6.3;11.2.6.3 Contact Pressures;356
16.2.7;11.2.7 Self-cleaning;357
16.2.8;11.2.8 Finger Touch Tests;357
16.2.8.1;11.2.8.1 Anti-smudge;357
16.2.8.2;11.2.8.2 Fingerprint Resistance;357
16.2.9;11.2.9 Anti-fogging;358
16.2.10;11.2.10 Anti-icing;358
16.2.11;11.2.11 Transparency;359
16.2.12;11.2.12 Oil-Water Separation;359
16.3;11.3 Nanoparticle/Binder Composite Coatings;359
16.3.1;11.3.1 Experimental Details;365
16.3.2;11.3.2 Characterization of Coatings Prepared Using Oxygen Plasma Treatment;368
16.3.3;11.3.3 Characterization of Coatings Applied Using UV-O Treatment;371
16.3.3.1;11.3.3.1 Wettability;371
16.3.3.2;11.3.3.2 Surface Morphology;374
16.3.3.3;11.3.3.3 Repellency of Surfactant-Containing Liquids;376
16.3.3.4;11.3.3.4 High Temperature Superliquiphobicity;377
16.3.3.5;11.3.3.5 Wear Resistance;379
16.3.3.6;11.3.3.6 Self-cleaning;381
16.3.3.7;11.3.3.7 Finger Touch Tests;382
16.3.3.8;11.3.3.8 Transparency;383
16.3.3.9;11.3.3.9 Oil-Water Separation;385
16.3.3.10;11.3.3.10 Summary;385
16.4;11.4 Layer-by-Layer Technique;385
16.4.1;11.4.1 Experimental Details;386
16.4.2;11.4.2 Results and Discussion;388
16.4.2.1;11.4.2.1 Wettability;388
16.4.2.2;11.4.2.2 Surface Morphology;391
16.4.2.3;11.4.2.3 Repellency of Surfactant Containing Liquids;391
16.4.2.4;11.4.2.4 Wear Resistance;391
16.4.2.5;11.4.2.5 Self-cleaning;394
16.4.2.6;11.4.2.6 Anti-smudge;394
16.4.2.7;11.4.2.7 Anti-fogging;397
16.4.2.8;11.4.2.8 Anti-icing;397
16.4.2.9;11.4.2.9 Transparency;399
16.4.2.10;11.4.2.10 Oil-Water Separation;400
16.4.3;11.4.3 Summary;400
16.5;11.5 Nanoparticle-Encapsulation Technique;402
16.5.1;11.5.1 Polycarbonate Surfaces;402
16.5.1.1;11.5.1.1 Experimental Details;403
16.5.1.2;11.5.1.2 Results and Discussion;403
16.5.1.3;11.5.1.3 Summary;409
16.5.2;11.5.2 Polypropylene Surfaces;409
16.5.2.1;11.5.2.1 Experimental Details;410
16.5.2.2;11.5.2.2 Results and Discussion;411
16.5.2.3;11.5.2.3 Summary;415
16.6;11.6 Liquid Impregnation Technique;416
16.6.1;11.6.1 Porous Polypropylene Surface Created Using Solvent-Nonsolvent Mixture;418
16.6.1.1;11.6.1.1 Experimental Details;419
16.6.1.2;11.6.1.2 Results and Discussion;419
16.6.1.3;11.6.1.3 Summary;423
16.6.2;11.6.2 Porous Polystyrene Surface Created Using Breath Figures;424
16.6.2.1;11.6.2.1 Experimental Details;425
16.6.2.2;11.6.2.2 Results and Discussion;426
16.6.2.3;11.6.2.3 Summary;428
16.7;11.7 Comparison of Various Roughness-Induced and Liquid Impregnation Techniques for Superoleophobicity;428
16.7.1;11.7.1 Comparison of Data;428
16.7.1.1;11.7.1.1 Wettability;429
16.7.1.2;11.7.1.2 Surface Morphology;431
16.7.1.3;11.7.1.3 Repellency of Surfactant-Containing Liquids;431
16.7.1.4;11.7.1.4 Wear Resistance;432
16.7.1.5;11.7.1.5 Self-cleaning, Anti-smudge, and Antifouling;433
16.7.1.6;11.7.1.6 Anti-icing and Anti-fogging;435
16.7.1.7;11.7.1.7 Transparency;435
16.7.1.8;11.7.1.8 Oil-Water Separation;436
16.7.1.9;11.7.1.9 Summary and Outlook;436
16.8;11.8 Closure;437
16.9;Appendix: Oil-Water Separation for Oil Spill Cleanup and Water Purification;437
16.9.1;Introduction;437
16.9.2;Common Methods for Oil Spill Cleanup;439
16.9.2.1;Dispersants;439
16.9.2.2;Controlled Burning;439
16.9.2.3;Sorbents;440
16.9.2.4;Skimmers;440
16.9.2.5;Booms;441
16.9.3;Proposed Bioinspired Net;442
16.9.4;Summary;444
16.10;References;444
17;12 Fabrication and Characterization of Mechanically Durable Superliquiphobic Surfaces;450
17.1;12.1 Introduction;450
17.2;12.2 Superoleophobic Aluminum Surfaces;450
17.2.1;12.2.1 Two-Step Technique Using Etching and Fluorination;451
17.2.1.1;12.2.1.1 Experimental Details;456
17.2.1.2;12.2.1.2 Characterization;456
17.2.1.3;12.2.1.3 Results and Discussion;457
17.2.1.4;12.2.1.4 Summary;466
17.2.2;12.2.2 Single Step Technique Using Fluorinated Nanoparticles;466
17.2.2.1;12.2.2.1 Experimental Details;466
17.2.2.2;12.2.2.2 Results and Discussions;468
17.2.2.3;12.2.2.3 Summary;476
17.3;12.3 Superoleophobic Stainless Steel Surfaces;477
17.3.1;12.3.1 Experimental Details;480
17.3.1.1;12.3.1.1 Substrate Materials;484
17.3.1.2;12.3.1.2 Sandblasting;484
17.3.1.3;12.3.1.3 Chemical Etching;484
17.3.1.4;12.3.1.4 Condensation Procedure;485
17.3.1.5;12.3.1.5 Nanoparticle-Binder Coating;487
17.3.1.6;12.3.1.6 Fluorosilane Coating;487
17.3.1.7;12.3.1.7 Characterization of Samples;488
17.3.2;12.3.2 Results and Discussion;488
17.3.2.1;12.3.2.1 Wettability;488
17.3.2.2;12.3.2.2 Self-cleaning;491
17.3.2.3;12.3.2.3 Anti-icing;491
17.3.2.4;12.3.2.4 Mechanical Durability;493
17.3.2.5;12.3.2.5 Corrosion Resistance of SS 430;494
17.3.3;12.3.3 Summary;499
17.4;12.4 Superoleophobic Synthetic Leather Surfaces;499
17.4.1;12.4.1 Experimental Details;500
17.4.2;12.4.2 Results and Discussion;502
17.4.2.1;12.4.2.1 Wettability;502
17.4.2.2;12.4.2.2 Self-cleaning;504
17.4.2.3;12.4.2.3 High Temperature Exposure;504
17.4.2.4;12.4.2.4 Wear Resistance;505
17.4.3;12.4.3 Summary;506
17.5;12.5 Closure;507
17.6;References;508
18;13 Shark Skin Surface for Fluid-Drag Reduction in Turbulent Flow;512
18.1;13.1 Introduction;512
18.2;13.2 Fluid Drag Reduction;514
18.2.1;13.2.1 Mechanisms of Fluid Drag;514
18.2.2;13.2.2 Shark Skin;517
18.3;13.3 Experimental Studies;518
18.3.1;13.3.1 Flow Visualization Studies;520
18.3.2;13.3.2 Riblet Geometries and Configurations;521
18.3.3;13.3.3 Riblet Fabrication;522
18.3.4;13.3.4 Drag Measurement Techniques;524
18.3.4.1;13.3.4.1 Open Channel;525
18.3.4.2;13.3.4.2 Closed Channel;530
18.3.5;13.3.5 Riblet Results and Discussion;531
18.3.5.1;13.3.5.1 Open Channel;532
18.3.5.2;13.3.5.2 Closed Channel;536
18.3.6;13.3.6 Summary;551
18.4;13.4 Fluid Flow Modeling;552
18.4.1;13.4.1 Computational Fluid Dynamic (CFD) Model;552
18.4.2;13.4.2 Modeling of Blade Riblets;555
18.4.2.1;13.4.2.1 Continuous Riblets;559
18.4.2.2;13.4.2.2 Segmented Riblets;559
18.4.2.3;13.4.2.3 Summary;563
18.4.3;13.4.3 Modeling of Blade, Sawtooth and Scalloped Riblets;564
18.4.3.1;13.4.3.1 Results and Discussion;567
18.4.3.2;13.4.3.2 Summary;570
18.5;13.5 Application of Riblets for Drag Reduction and Antifouling;572
18.5.1;13.5.1 Industrial Examples;572
18.5.2;13.5.2 Prototypes and Commercial Applications;573
18.6;13.6 Closure;577
18.7;References;579
19;14 Skimmer Bird Beak (Rynchops) Surface for Fluid Drag Reduction in Turbulent Flow;584
19.1;14.1 Introduction;584
19.2;14.2 Experimental and Computational Procedure;587
19.2.1;14.2.1 Sample Fabrication Process;587
19.2.2;14.2.2 Experimental Setup;589
19.2.3;14.2.3 Computational Modeling;589
19.3;14.3 Results and Discussion;590
19.3.1;14.3.1 Experimental Results;591
19.3.2;14.3.2 Modeling Results;592
19.4;14.4 Closure;594
19.5;References;596
20;15 Rice Leaf and Butterfly Wing Effect;598
20.1;15.1 Introduction;598
20.2;15.2 Inspiration from Living Nature;598
20.2.1;15.2.1 Ambient Species—Lotus Effect;599
20.2.2;15.2.2 Aquatic Species—Shark Skin and Fish Scales Effect;599
20.2.3;15.2.3 Ambient Species—Rice Leaf and Butterfly Wing Effect;599
20.3;15.3 Sample Fabrication;601
20.3.1;15.3.1 Actual Sample Replicas;601
20.3.2;15.3.2 Rice Leaf Inspired Surfaces;602
20.3.2.1;15.3.2.1 Micropatterned Replicas;605
20.3.2.2;15.3.2.2 Hot Embossed Plastic Sheets;606
20.4;15.4 Pressure Drop Measurement Technique;608
20.5;15.5 Results and Discussion;611
20.5.1;15.5.1 Surface Characterization;611
20.5.2;15.5.2 Pressure Drop Measurements;614
20.5.2.1;15.5.2.1 Water Flow;616
20.5.2.2;15.5.2.2 Oil Flow;621
20.5.2.3;15.5.2.3 Air Flow;623
20.5.2.4;15.5.2.4 Summary;625
20.5.3;15.5.3 Nondimensional Pressure Drop Model;626
20.5.4;15.5.4 Wettability;630
20.5.5;15.5.5 Drag Reduction Models;632
20.5.6;15.5.6 Self-cleaning Measurements;638
20.6;15.6 Closure;639
20.7;References;640
21;16 Bio- and Inorganic Fouling;642
21.1;16.1 Introduction;642
21.2;16.2 Fields Susceptible to Fouling;642
21.3;16.3 Biofouling and Inorganic Fouling Formation Mechanisms;648
21.3.1;16.3.1 Biofouling Formation;648
21.3.2;16.3.2 Inorganic Fouling Formation;649
21.3.3;16.3.3 Surface Factors;650
21.4;16.4 Antifouling Strategies from Living Nature;652
21.5;16.5 Current Prevention and Cleaning Techniques for Antifouling;658
21.5.1;16.5.1 Current Prevention Techniques;658
21.5.1.1;16.5.1.1 Medical Anti-biofouling;658
21.5.1.2;16.5.1.2 Marine Antifouling;659
21.5.1.3;16.5.1.3 Industrial Antifouling;660
21.5.2;16.5.2 Self-cleaning Surfaces and Cleaning Techniques;660
21.6;16.6 Nanomaterials for Anti-biofouling;661
21.6.1;16.6.1 Surface Treatment of Cotton Fabrics;665
21.6.2;16.6.2 Morphology and Contact Angle;666
21.6.3;16.6.3 Durability of the Treatment After Wash;668
21.6.4;16.6.4 Antimicrobial Properties;669
21.7;16.7 Nanostructured Surfaces for Antifouling;669
21.7.1;16.7.1 Fabrication of Micropatterned Samples;670
21.7.2;16.7.2 Anti-biofouling Measurements;671
21.7.3;16.7.3 Anti-inorganic Fouling Measurements;672
21.7.4;16.7.4 Results and Discussion;673
21.7.4.1;16.7.4.1 Anti-biofouling;673
21.7.4.2;16.7.4.2 Anti-inorganic Fouling;678
21.8;16.8 Closure;679
21.9;References;680
22;17 Bioinspired Strategies for Water Collection and Water Purification;686
22.1;17.1 Introduction;686
22.2;17.2 Water Collection—Lessons from Living Nature;690
22.2.1;17.2.1 Namib Desert Beetles;692
22.2.2;17.2.2 Lizards;692
22.2.3;17.2.3 Spider Webs;693
22.2.4;17.2.4 Cacti;695
22.2.5;17.2.5 Other Plant Species;695
22.2.6;17.2.6 Summary;696
22.3;17.3 Bioinspired Water Collection Approaches;696
22.3.1;17.3.1 Beetle-Inspired Water Collection;696
22.3.2;17.3.2 Spider-Web-Inspired Water Collection;699
22.3.3;17.3.3 Cacti-Inspired Water Collection;701
22.3.4;17.3.4 Summary;702
22.4;17.4 Bioinspired Water Desalination and Water Purification Approaches;703
22.4.1;17.4.1 Multi-cellular Structures;707
22.4.2;17.4.2 Aquaporins;709
22.4.2.1;17.4.2.1 Pore-Forming Molecules;709
22.4.2.2;17.4.2.2 Carbon Nanotubes;711
22.4.2.3;17.4.2.3 Self-assembled Block Copolymers;712
22.4.3;17.4.3 Steel Wire Mesh Coated with Superhydrophilic/Superoleophobic Coating;713
22.4.4;17.4.4 Dual pH- and Ammonia-Vapor-Responsive Electrospun Nanofibrous Polymer Membranes with Superliquiphilic/phobic Properties;715
22.4.5;17.4.5 Summary;716
22.5;17.5 Outlook;717
22.6;Appendix: Laplace Pressure Gradient on a Conical Surface;717
22.7;References;718
23;18 Role of Liquid Repellency on Fluid Slip, Fluid Drag, and Formation of Nanobubbles;723
23.1;18.1 Introduction;723
23.2;18.2 Measurement Techniques for Boundary Slip and Nanobubbles;724
23.2.1;18.2.1 Measurement of Boundary Slip;724
23.2.1.1;18.2.1.1 Analysis to Calculate the Slip Length Based on Liquid Drainage Method;725
23.2.1.2;18.2.1.2 AFM Measurement Technique;726
23.2.2;18.2.2 Imaging of Nanobubbles;728
23.3;18.3 Fluid Slip Measurements on Liquiphilic/phobic Surfaces;728
23.3.1;18.3.1 Hydrophilic/phobic Surfaces;728
23.3.2;18.3.2 Oleophilic/phobic Surfaces;729
23.3.3;18.3.3 Effect of Electric Field and Liquid pH on Fluid Slip;733
23.4;18.4 Generation of Nanobubbles on Hydrophobic Surfaces;740
23.4.1;18.4.1 Role of Nanobubbles on Fluid Slip and Drag;740
23.4.2;18.4.2 Coalescence and Stability of Nanobubbles;743
23.4.3;18.4.3 Nanobubble-Substrate Interaction;746
23.4.4;18.4.4 Effect of Electric Field and Liquid pH Values on Propensity of Nanobubbles;749
23.4.5;18.4.5 Applications of Speciality Fluids with Nanobubbles in Biomedicine;751
23.5;18.5 Closure;756
23.6;References;757
24;19 Gecko Adhesion;759
24.1;19.1 Introduction;759
24.2;19.2 Hairy Attachment Systems;760
24.3;19.3 Tokay Gecko;763
24.3.1;19.3.1 Construction of Tokay Gecko;763
24.3.2;19.3.2 Adhesion Enhancement by Division of Contacts and Multilevel Hierarchical Structure;766
24.3.3;19.3.3 Peeling;768
24.3.4;19.3.4 Self-cleaning;772
24.4;19.4 Attachment Mechanisms;774
24.4.1;19.4.1 van der Waals Forces;775
24.4.2;19.4.2 Capillary Forces;776
24.5;19.5 Adhesion Measurements and Data;778
24.5.1;19.5.1 Adhesion Under Ambient Conditions;778
24.5.1.1;19.5.1.1 Adhesion Force of a Single Seta;778
24.5.1.2;19.5.1.2 Adhesive Force of a Single Spatula;779
24.5.2;19.5.2 Effects of Temperature;780
24.5.3;19.5.3 Effects of Humidity;781
24.5.4;19.5.4 Effects of Hydrophobicity;782
24.6;19.6 Adhesion Modeling of Fibrillar Structures;784
24.6.1;19.6.1 Single Spring Contact Analysis;785
24.6.2;19.6.2 The Multi-level Hierarchical Spring Analysis;786
24.6.3;19.6.3 Adhesion Results of the Multi-level Hierarchical Spring Model;790
24.6.4;19.6.4 Capillary Effects;798
24.7;19.7 Adhesion Data Base of Fibrillar Structures;801
24.7.1;19.7.1 Fiber Model;801
24.7.2;19.7.2 Single Fiber Contact Analysis;802
24.7.3;19.7.3 Constraints;803
24.7.3.1;19.7.3.1 Non-buckling Condition;803
24.7.3.2;19.7.3.2 Non-fiber Fracture Condition;805
24.7.3.3;19.7.3.3 Non-sticking Condition;806
24.7.4;19.7.4 Numerical Simulation;807
24.7.5;19.7.5 Results and Discussion;809
24.8;19.8 Fabrication of Gecko Skin-Inspired Structures;813
24.8.1;19.8.1 Single Level Roughness Structures;813
24.8.2;19.8.2 Multi-level Hierarchical Structures;821
24.9;19.9 Closure;830
24.10;References;832
25;20 Insects Locomotion, Piercing, Sucking and Stinging Mechanisms;838
25.1;20.1 Introduction;838
25.2;20.2 Mosquitoes’ Locomotion and Painless Piercing;842
25.2.1;20.2.1 Locomotion;843
25.2.1.1;20.2.1.1 Standing on Water;844
25.2.1.2;20.2.1.2 Sticking to Any Surface;845
25.2.1.3;20.2.1.3 Flying in Air and Rain;848
25.2.1.4;20.2.1.4 Summary;850
25.2.2;20.2.2 Painless Piercing;850
25.2.2.1;20.2.2.1 Microanatomy;850
25.2.2.2;20.2.2.2 Feeding;852
25.2.2.3;20.2.2.3 Nanomechanical Property Measurements of Labium;854
25.2.2.4;20.2.2.4 Relevance of Nanomechanical Properties in Piercing Mechanism;859
25.2.3;20.2.3 Lessons from Mosquito Piercing and Conceptual Schematic of a Painless Mosquito-Inspired Microneedle;859
25.2.4;20.2.4 Summary;861
25.3;20.3 Wasp Stinging;862
25.3.1;20.3.1 Microanatomy and Stinging Process;862
25.3.2;20.3.2 Structure, Nanomechanical Properties and Modeling of the Penetration Process;865
25.3.2.1;20.3.2.1 Experimental Details;865
25.3.2.2;20.3.2.2 Results and Discussion;867
25.3.3;20.3.3 Conceptual Schematic of a Painless, Wasp-Inspired Microneedle;874
25.3.4;20.3.4 Summary;876
25.4;20.4 Closure;876
25.5;References;876
26;21 Structure and Mechanical Properties of Nacre;880
26.1;21.1 Introduction;880
26.2;21.2 Hierarchical Structure;882
26.2.1;21.2.1 Columnar and Sheet Structure;882
26.2.2;21.2.2 Mineral Bridges;884
26.2.3;21.2.3 Polygonal Nanograins;885
26.2.4;21.2.4 Inter-tile Toughening Mechanism;886
26.3;21.3 Mechanical Properties;887
26.4;21.4 Bioinspired Structures;891
26.5;21.5 Closure;892
26.6;References;894
27;22 Structural Coloration;897
27.1;22.1 Introduction;897
27.2;22.2 Physical Mechanisms of Structural Colors;900
27.2.1;22.2.1 Film Interference;900
27.2.2;22.2.2 Diffraction Gratings;902
27.2.3;22.2.3 Scattering;903
27.2.4;22.2.4 Photonic Crystals;903
27.2.5;22.2.5 Coloration Changes;904
27.3;22.3 Lessons from Living Nature;906
27.3.1;22.3.1 Film Interference;906
27.3.2;22.3.2 Diffraction Grating;912
27.3.3;22.3.3 Scattering;912
27.3.4;22.3.4 Photonic Crystals;915
27.3.5;22.3.5 Coloration Changes;918
27.4;22.4 Bioinspired Fabrication and Applications;920
27.5;22.5 Closure;922
27.6;References;922
28;23 Self-healing Materials and Defense Mechanisms;929
28.1;23.1 Introduction;929
28.2;23.2 Self-healing and Defense Mechanisms Found in Living Nature;932
28.2.1;23.2.1 Fauna;936
28.2.1.1;23.2.1.1 Vertebrates and Invertebrates;936
28.2.1.2;23.2.1.2 Vertebrate Hard Tissue;942
28.2.1.3;23.2.1.3 Vertebrate Soft Tissue;943
28.2.1.4;23.2.1.4 Invertebrate Hard Tissue;947
28.2.1.5;23.2.1.5 Invertebrate Soft Tissue;949
28.2.2;23.2.2 Flora;950
28.2.2.1;23.2.2.1 Herbaceous and Woody Plants;950
28.2.2.2;23.2.2.2 Woody Plants;955
28.2.3;23.2.3 Summary;957
28.3;23.3 Prevalent Self-healing Mechanisms;957
28.3.1;23.3.1 Fauna;959
28.3.1.1;23.3.1.1 Reversible Muscle Control;959
28.3.1.2;23.3.1.2 Clotting;960
28.3.1.3;23.3.1.3 Cellular Response;960
28.3.1.4;23.3.1.4 Layering;961
28.3.1.5;23.3.1.5 Protective Surfaces;961
28.3.2;23.3.2 Flora;962
28.3.2.1;23.3.2.1 Vascular Networks or Cells;962
28.3.2.2;23.3.2.2 Exposure;963
28.3.2.3;23.3.2.3 Replenishable and Functional Coatings;963
28.3.3;23.3.3 Summary;964
28.4;23.4 Examples of Bioinspired Self-healing Materials;964
28.4.1;23.4.1 Protective Coatings;964
28.4.2;23.4.2 Autogenous Healing;966
28.4.3;23.4.3 Shape Memory;966
28.4.4;23.4.4 Chemical Activity;967
28.4.5;23.4.5 Vascular Networks or Capsules;968
28.4.6;23.4.6 Bio-healing;969
28.4.7;23.4.7 External Stimuli–Sensitive Materials;970
28.4.8;23.4.8 New Approaches by Combination of Several Mechanisms;970
28.4.9;23.4.9 Summary;970
28.5;23.5 Closure;971
28.6;References;972
29;24 Outlook;977
30;Index;979



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.