Bhunia / Majerus / Sawan | Implantable Biomedical Microsystems | E-Book | sack.de
E-Book

E-Book, Englisch, 336 Seiten

Reihe: Micro and Nano Technologies

Bhunia / Majerus / Sawan Implantable Biomedical Microsystems

Design Principles and Applications
1. Auflage 2015
ISBN: 978-0-323-26190-6
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

Design Principles and Applications

E-Book, Englisch, 336 Seiten

Reihe: Micro and Nano Technologies

ISBN: 978-0-323-26190-6
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



Research and innovation in areas such as circuits, microsystems, packaging, biocompatibility, miniaturization, power supplies, remote control, reliability, and lifespan are leading to a rapid increase in the range of devices and corresponding applications in the field of wearable and implantable biomedical microsystems, which are used for monitoring, diagnosing, and controlling the health conditions of the human body. This book provides comprehensive coverage of the fundamental design principles and validation for implantable microsystems, as well as several major application areas. Each component in an implantable device is described in details, and major case studies demonstrate how these systems can be optimized for specific design objectives. The case studies include applications of implantable neural signal processors, brain-machine interface (BMI) systems intended for both data recording and treatment, neural prosthesis, bladder pressure monitoring for treating urinary incontinence, implantable imaging devices for early detection and diagnosis of diseases as well as electrical conduction block of peripheral nerve for chronic pain management. Implantable Biomedical Microsystems is the first comprehensive coverage of bioimplantable system design providing an invaluable information source for researchers in Biomedical, Electrical, Computer, Systems, and Mechanical Engineering as well as engineers involved in design and development of wearable and implantable bioelectronic devices and, more generally, teams working on low-power microsystems and their corresponding wireless energy and data links. - First time comprehensive coverage of system-level and component-level design and engineering aspects for implantable microsystems. - Provides insight into a wide range of proven applications and application specific design trade-offs of bioimplantable systems, including several major case studies - Enables Engineers involved in development of implantable electronic systems to optimize applications for specific design objectives.

Bhunia / Majerus / Sawan Implantable Biomedical Microsystems jetzt bestellen!

Weitere Infos & Material


1;Front cover;1
2;Implantable Biomedical Microsystems: Design Principles and Applications;2
3;Copyright;3
4;Contents;4
5;Contributors;11
6;Preface;14
7;Part I: Design Principles for Bioimplantable Systems;16
7.1;Chapter 1: Introduction;18
7.1.1;Part I: Design Principles for Bioimplantable Systems;22
7.1.2;Chapter 2: Electrical Interfaces for Recording, Stimulation, and Sensing;22
7.1.3;Chapter 3: Analogue Front-End and Telemetry Systems;22
7.1.4;Chapter 4: Signal processing hardware;23
7.1.5;Chapter 5: Energy Management Integrated Circuits for Wireless Power Transmission;23
7.1.6;Chapter 6: System Integration and Packaging;23
7.1.7;Chapter 7: Clinical and Regulatory Considerations of Implantable Medical Devices;24
7.1.8;Chapter 8: Reliability and Security of Implantable and Wearable Medical Devices;24
7.1.9;Part II: Applications of Bioimplantable Systems;24
7.1.10;Chapter 9: Electrical biosensors: peripheral nerve sensors;24
7.1.11;Chapter 10: Electrodes for Electrical Conduction Block of Peripheral Nerve;25
7.1.12;Chapter 11: Implantable Bladder Pressure Sensor for Chronic Application;25
7.1.13;Chapter 12: Neural Recording Interfaces for Intracortical Implants;26
7.1.14;Chapter 13: Implantable Imaging System for Automated Monitoring of Internal Organs;26
7.1.15;References;26
7.2;Chapter 2: Electrical interfaces for recording, stimulation, and sensing;28
7.2.1;2.1. Introduction;28
7.2.2;2.2. Electrode Design Considerations;30
7.2.3;2.3. Electrode Designs;32
7.2.3.1;2.3.1. Microwire Probes;32
7.2.3.2;2.3.2. Silicon-Based Devices;32
7.2.3.3;2.3.3. Polymer-Based Devices;35
7.2.3.3.1;2.3.3.1. General considerations;35
7.2.3.3.2;2.3.3.2. Polyimide;37
7.2.3.3.3;2.3.3.3. Polydimethylsiloxane;38
7.2.3.3.4;2.3.3.4. Parylene;40
7.2.3.3.5;2.3.3.5. Liquid crystal polymer;40
7.2.3.3.6;2.3.3.6. Polymer nanocomposites;41
7.2.3.3.7;2.3.3.7. Issues;43
7.2.4;2.4. Emerging Design Trends;45
7.2.4.1;2.4.1. New Materials and Designs for Enhanced Bio-integration;45
7.2.4.2;2.4.2. Waveguides for Implanted Optogenetic Stimulation Systems;45
7.2.5;References;46
7.3;Chapter 3: Analog front-end and telemetry systems;54
7.3.1;3.1. Introduction;54
7.3.2;3.2. Analog Front-End System;55
7.3.3;3.3. Front-End Amplifier Design;56
7.3.4;3.4. Simulation Circuit Design;63
7.3.5;3.5. Telemetry System Introduction;66
7.3.6;3.6. RF Power Transfer Circuit;66
7.3.7;3.7. Data Telemetry Circuit;67
7.3.8;3.8. Summary;70
7.3.9;Acknowledgment;70
7.4;Chapter 4: Signal processing hardware;72
7.4.1;4.1. Introduction;72
7.4.2;4.2. Hardware Architecture of the Signal Processing Systems;73
7.4.3;4.3. Analog, Digital, and Mixed-Signal Processors;77
7.4.3.1;4.3.1. Signal Processing Using Analog Circuits;78
7.4.3.1.1;4.3.1.1. Analog signal processing of neural signals;78
7.4.3.1.1.1;Low-power analog processor for automatic neural spike detection;79
7.4.3.1.1.2;Low-power analog processor for decoding of neural signals from the motor cortex;81
7.4.3.1.1.3;Other analog processors of neural signals;83
7.4.3.1.2;4.3.1.2. Low-power analog processor for cochlear implants;83
7.4.3.1.3;4.3.1.3. Ultralow-power analog processor for ECG acquisition and feature extraction;84
7.4.3.2;4.3.2. Digital Signal Processing;86
7.4.3.2.1;4.3.2.1. Choosing the right processor for digital signal processing;86
7.4.3.2.1.1;General-purpose processors (GPPs);87
7.4.3.2.1.2;Microcontrollers (MCU);88
7.4.3.2.1.3;Digital signal processors (DSPs);89
7.4.3.2.1.4;Application-specific standard products (ASSPs);90
7.4.3.2.1.5;Field programmable gate array (FPGA)-based processors;90
7.4.3.2.1.6;Application-specific integrated circuit (ASIC)-based processors;91
7.4.3.2.2;4.3.2.2. Choosing the right numeric format for DSP processors;91
7.4.3.3;4.3.3. Design Examples of DSP Processors for bioimplantable systems;92
7.4.3.3.1;4.3.3.1. Custom DSP processor for bladder monitoring through afferent neural signals;93
7.4.3.3.2;4.3.3.2. Mixed-signal processor to detect epileptic seizures;96
7.4.4;4.4. Conclusions;98
7.4.5;References;98
7.5;Chapter 5: Energy management integrated circuits for wireless power transmission;102
7.5.1;5.1. Introduction;102
7.5.2;5.2. Wireless Power Transmission Mechanisms;104
7.5.3;5.3. Overall Structure of Inductively Powered Devices;106
7.5.4;5.4. AC–DC Conversion Units;107
7.5.4.1;5.4.1. Passive AC–DC Converters;108
7.5.4.2;5.4.2. Active AC–DC Converters;109
7.5.4.3;5.4.3. Adaptive Reconfigurable AC–DC Converters;112
7.5.4.4;5.4.4. Regulated AC–DC Converters;114
7.5.4.5;5.4.5. Voltage Regulators;117
7.5.5;5.5. Rechargeable Battery and Supercapacitor Charging Units;118
7.5.5.1;5.5.1. Secondary Energy Sources;119
7.5.5.2;5.5.2. Li-ion Battery Charger;119
7.5.5.3;5.5.3. Wireless Capacitor Charger;121
7.5.6;References;122
7.6;Chapter 6: System integration and packaging;128
7.6.1;6.1. Introduction;128
7.6.2;6.2. Brief Review of Implant Package Technologies;131
7.6.2.1;6.2.1. Hermetic Box Packaging Technologies for Long-Term Implants;131
7.6.2.2;6.2.2. Nonhermetic Micropackage Technologies;132
7.6.3;6.3. System Integration and Biocompatibility;134
7.6.4;6.4. Packaging Materials and Technologies;135
7.6.5;6.5. CWRU Nonhermetic Micropackage Technology;137
7.6.5.1;6.5.1. Characterization of PDMS Micropackage Technology and Evaluation;137
7.6.5.2;6.5.2. Verification of the Hypotheses and Mechanism of PDMS Micropackage Processes;140
7.6.5.3;6.5.3. Micropackage Technology for 3-D Implantable Systems;142
7.6.6;6.6. Implant Evaluation of Nonhermetic Micropackage Technologies;145
7.6.6.1;6.6.1. Package Methods and Implant-Telemetry-Device Design;145
7.6.6.2;6.6.2. Implant Evaluation Results and Discussion;146
7.6.6.3;6.6.3. Summary of Implant Evaluation;148
7.6.7;6.7. Conclusion;148
7.6.8;Acknowledgment;148
7.6.9;References;149
7.7;Chapter 7: Clinical and regulatory considerations of implantable medical devices;152
7.7.1;7.1. Introduction;153
7.7.2;7.2. Patient Selection and Special Populations;154
7.7.2.1;7.2.1. Geriatric Population;154
7.7.2.2;7.2.2. Patients with Neurological Disease;155
7.7.2.3;7.2.3. Children;155
7.7.3;7.3. Biocompatibility;156
7.7.3.1;7.3.1. Metals;157
7.7.3.2;7.3.2. Polymers;157
7.7.3.3;7.3.3. Location of Implant;158
7.7.4;7.4. Implantation;159
7.7.4.1;7.4.1. The Ideal Implant;159
7.7.4.2;7.4.2. Perioperative Risks;159
7.7.4.3;7.4.3. Surgical Approach and Technique;159
7.7.4.4;7.4.4. Device Design;160
7.7.5;7.5. Explantation;161
7.7.5.1;7.5.1. Approach to Device Removal;161
7.7.5.2;7.5.2. Replacement and Timing;161
7.7.5.3;7.5.3. Biodegradable Devices;162
7.7.6;7.6. Infection;162
7.7.6.1;7.6.1. Infection Prevention;163
7.7.6.2;7.6.2. Management of Infected Medical Implants;163
7.7.7;7.7. Device Wear and Tear;163
7.7.7.1;7.7.1. Change in Performance Over Time: Mechanical Failure;164
7.7.7.2;7.7.2. Electrical and Electrochemical Wear;165
7.7.7.3;7.7.3. Erosion and Migration;165
7.7.8;7.8. Regulatory Considerations: Tackling the FDA;166
7.7.8.1;7.8.1. What is a Device?;166
7.7.8.2;7.8.2. Classify Your Device: Class I, II, III;167
7.7.8.3;7.8.3. Premarket Notification and Approval;168
7.7.8.4;7.8.4. Investigational Device Use;170
7.7.8.5;7.8.5. Quality Systems Regulation Practices;171
7.7.8.6;7.8.6. Device Labeling;172
7.7.8.7;7.8.7. Reporting of Adverse Events;172
7.7.8.8;7.8.8. Regulatory Conclusions;174
7.7.9;7.9. Summary and Conclusions;174
7.7.10;References;174
7.8;Chapter 8: Reliability and security of implantable and wearable medical devices;182
7.8.1;8.1. Introduction;183
7.8.2;8.2. Safety of Implantable and Wearable Medical Devices;184
7.8.2.1;8.2.1. Safety Concerns for IWMDs;184
7.8.2.2;8.2.2. Challenges in Reliable and Secure IWMD Design;187
7.8.3;8.3. Reliability Concerns and Solutions;188
7.8.3.1;8.3.1. Hardware Failures;189
7.8.3.1.1;8.3.1.1. Power Subsystem Reliability;189
7.8.3.1.2;8.3.1.2. Processor and Memory Failures;190
7.8.3.1.3;8.3.1.3. Packaging and Mechanical/Chemical Reliability;191
7.8.3.2;8.3.2. Software Reliability;191
7.8.3.3;8.3.3. RF Reliability;193
7.8.3.4;8.3.4. Human Reliability;193
7.8.4;8.4. Security Concerns and Solutions;194
7.8.4.1;8.4.1. Radio Attacks;195
7.8.4.1.1;8.4.1.1. Eavesdropping and Access Control;195
7.8.4.1.2;8.4.1.2. Battery Drain Attacks;198
7.8.4.1.3;8.4.1.3. External Security Devices to Defend Against Radio Attacks;198
7.8.4.2;8.4.2. Side-Channel Attacks;200
7.8.4.3;8.4.3. Hardware Attacks;201
7.8.4.3.1;8.4.3.1. Hardware Trojan;201
7.8.4.3.2;8.4.3.2. EMI Injection Attacks;201
7.8.4.4;8.4.4. Software Attacks;202
7.8.4.5;8.4.5. Human Errors;205
7.8.5;8.5. Conclusions;205
7.8.6;Acknowledgment;206
7.8.7;References;206
8;Part II: Applications of Bioimplantable Systems;216
8.1;Chapter 9: Biochips: Electrical Biosensors: Peripheral Nerve Sensors;218
8.1.1;Electrical Biosensors: Peripheral Nerve Sensors;218
8.1.2;9.1. Introduction;218
8.1.3;9.2. Peripheral Nerve Anatomy;219
8.1.4;9.3. Cuff-Style Electrodes;219
8.1.4.1;9.3.1. Types;220
8.1.4.2;9.3.2. Fabrication;220
8.1.4.3;9.3.3. Uses;220
8.1.5;9.4. Penetrating and Sieve Electrodes;222
8.1.5.1;9.4.1. Types;224
8.1.5.2;9.4.2. Fabrication;224
8.1.5.3;9.4.3. Uses;225
8.1.6;9.5. Neural Recording Amplifiers;225
8.1.7;References;228
8.2;Chapter 10: Electrodes for electrical conduction block of the peripheral nerve;230
8.2.1;10.1. Introduction;230
8.2.2;10.2. Kilohertz Frequency Alternating Current (KHFAC) Nerve Block;231
8.2.2.1;10.2.1. Electrodes for KHFAC Nerve Block;233
8.2.3;10.3. Direct Current Nerve Block;234
8.2.3.1;10.3.1. Electrode Chemistry and Nerve Damage;235
8.2.3.2;10.3.2. Types of High-Capacitance Electrodes;236
8.2.3.3;10.3.3. Fabrication and Testing of High-Capacitance Electrodes for DC Nerve Block;237
8.2.3.4;10.3.4. Electrode Potential Measurements;238
8.2.3.5;10.3.5. DC Waveform Parameters;238
8.2.3.6;10.3.6. DC Block Success;239
8.2.3.7;10.3.7. Nerve Integrity Testing;240
8.2.3.8;10.3.8. Cumulative DC Delivery Testing;240
8.2.4;10.4. Conclusion;241
8.2.5;References;241
8.3;Chapter 11: Implantable bladder pressure sensor for chronic application: a case study;246
8.3.1;11.1. Introduction;246
8.3.2;11.2. Challenges and Constraints for a Chronically Implanted Bladder Pressure Sensor;248
8.3.3;11.3. Wireless Implantable Micromanometer Concept;248
8.3.4;11.4. Implantable Microsystem Design;252
8.3.4.1;11.4.1. Power Management Unit;253
8.3.4.2;11.4.2. Adaptive Rate Transmitter;254
8.3.4.3;11.4.3. Wireless Battery Charger;256
8.3.5;11.5. Microsystem Assembly and Packaging;257
8.3.5.1;11.5.1. Microsystem Packaging;258
8.3.6;11.6. Implant In Vivo Animal Trials;260
8.3.7;11.7. Conclusion;263
8.3.8;Acknowledgment;264
8.3.9;References;264
8.4;Chapter 12: Neural recording interfaces for intracortical implants * ;266
8.4.1;12.1. Introduction;266
8.4.2;12.2. State-of-the-Art Review;268
8.4.2.1;12.2.1. Wireless Multichannel Neurocortical Recording Systems;269
8.4.2.2;12.2.2. AFE Interfaces for Multichannel Systems;273
8.4.3;12.3. Neural Sensor Architecture;275
8.4.3.1;12.3.1. Modes of Operation;278
8.4.3.1.1;12.3.1.1. Calibration;278
8.4.3.1.2;12.3.1.2. Signal tracking;279
8.4.3.1.3;12.3.1.3. Feature extraction;279
8.4.3.2;12.3.2. Event-Based Communication;280
8.4.3.3;12.3.3. Communication Protocol;283
8.4.4;12.4. Channel Architecture;284
8.4.5;12.5. Telemetry Unit;286
8.4.6;12.6. Experimental Results;287
8.4.7;12.7. Conclusions;293
8.4.8;References;293
8.5;Chapter 13: Implantable imaging system for automated monitoring of internal organs;296
8.5.1;13.1. Introduction;297
8.5.1.1;13.1.1. Limitations of Existing Monitoring Technology;298
8.5.2;13.2. Implantable Imaging System: An Overview;298
8.5.2.1;13.2.1. Proposed System;298
8.5.2.2;13.2.2. How Diagnostic Ultrasound Imaging Functions? A Brief Recall;300
8.5.3;13.3. System Overview;303
8.5.3.1;13.3.1. Design Space Exploration;303
8.5.3.1.1;13.3.1.1. Transducer;304
8.5.3.1.1.1;Frequency;305
8.5.3.1.1.2;Pitch;305
8.5.3.1.1.3;Array material;305
8.5.3.1.1.4;Active aperture;305
8.5.3.1.2;13.3.1.2. Imaging assembly;305
8.5.3.2;13.3.2. Imaging Operation;307
8.5.3.3;13.3.3. Power Analysis;308
8.5.3.3.1;13.3.3.1. Power/energy requirements;308
8.5.3.3.2;13.3.3.2. Power supply in implantable assembly;309
8.5.3.4;13.3.4. Implantability Issues;310
8.5.3.4.1;13.3.4.1. Biocompatibility;310
8.5.3.4.2;13.3.4.2. Attachment of device;311
8.5.3.4.3;13.3.4.3. Temperature rise in tissue;311
8.5.4;13.4. Verification of Advantages of Interstitial Ultrasonic Imaging;311
8.5.4.1;13.4.1. Software Simulations;312
8.5.4.1.1;13.4.1.1. Simulation framework;312
8.5.4.1.2;13.4.1.2. Imaging metrics;314
8.5.4.1.3;13.4.1.3. Simulation results;314
8.5.4.2;13.4.2. Experimental Evaluations;316
8.5.4.2.1;13.4.2.1. Experimental framework;318
8.5.4.2.2;13.4.2.2. Experimental results;321
8.5.5;13.5. A Few Discussion Points;324
8.5.5.1;13.5.1. Economic Feasibility;324
8.5.5.2;13.5.2. Downscaling of Size;324
8.5.5.3;13.5.3. Wider Scan Range;324
8.5.5.4;13.5.4. Extension of Application;324
8.5.5.5;13.5.5. Image Denoising;325
8.5.5.6;13.5.6. Beyond Early Detection of Cancer;325
8.5.6;13.6. Conclusion;325
8.5.7;References;325
9;Summary and future work;328
9.1;Summary;328
9.2;Future Work;328
10;Index;330



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.