E-Book, Englisch, 306 Seiten
Bhattacharya Applied Machine Learning Explainability Techniques
1. Auflage 2022
ISBN: 978-1-80323-416-8
Verlag: De Gruyter
Format: EPUB
Kopierschutz: 0 - No protection
Make ML models explainable and trustworthy for practical applications using LIME, SHAP, and more
E-Book, Englisch, 306 Seiten
ISBN: 978-1-80323-416-8
Verlag: De Gruyter
Format: EPUB
Kopierschutz: 0 - No protection
No detailed description available for "Applied Machine Learning Explainability Techniques".
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Table of Contents - Foundational Concepts of Explainability Techniques
- Model Explainability Methods
- Data-Centric Approaches
- LIME for Model Interpretability
- Practical Exposure to Using LIME in ML
- Model Interpretability Using SHAP
- Practical Exposure to Using SHAP in ML
- Human-Friendly Explanations with TCAV
- Other Popular XAI Frameworks
- XAI Industry Best Practices
- End User-Centered Artificial Intelligence