Bhatia | Data Mining and Data Warehousing | Buch | 978-1-108-72774-7 | sack.de

Buch, Englisch, 506 Seiten, Format (B × H): 189 mm x 246 mm, Gewicht: 980 g

Bhatia

Data Mining and Data Warehousing


Erscheinungsjahr 2019
ISBN: 978-1-108-72774-7
Verlag: Cambridge University Press

Buch, Englisch, 506 Seiten, Format (B × H): 189 mm x 246 mm, Gewicht: 980 g

ISBN: 978-1-108-72774-7
Verlag: Cambridge University Press


Written in lucid language, this valuable textbook brings together fundamental concepts of data mining and data warehousing in a single volume. Important topics including information theory, decision tree, Naïve Bayes classifier, distance metrics, partitioning clustering, associate mining, data marts and operational data store are discussed comprehensively. The textbook is written to cater to the needs of undergraduate students of computer science, engineering and information technology for a course on data mining and data warehousing. The text simplifies the understanding of the concepts through exercises and practical examples. Chapters such as classification, associate mining and cluster analysis are discussed in detail with their practical implementation using Weka and R language data mining tools. Advanced topics including big data analytics, relational data models and NoSQL are discussed in detail. Pedagogical features including unsolved problems and multiple-choice questions are interspersed throughout the book for better understanding.

Bhatia Data Mining and Data Warehousing jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Preface; Acknowledgement; Dedication; 1. Beginning with machine learning; 2. Introduction to data mining; 3. Beginning with Weka and R language; 4. Data pre-processing; 5. Classification; 6. Implementing classification in Weka and R; 7. Cluster analysis; 8. Implementing clustering with Weka and R; 9. Association mining; 10. Implementing association mining with Weka and R; 11. Web mining and search engine; 12. Operational data store and data warehouse; 13. Data warehouse schema; 14. Online analytical processing; 15. Big data and NoSQL; Reference; Index.


Bhatia, Parteek
Parteek Bhatia is an associate professor in the department of computer science and engineering at Thapar Institute of Engineering and Technology, Patiala. He has more than twenty years of teaching experience and has published papers in journals. His current research includes natural language processing, machine learning and human computer interface. He has taught courses including data mining and data warehousing, big data analysis and database management system at undergraduate and graduate levels.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.