Berton | Practical RHEL AI | Buch | 979-8-8688-1900-1 | www2.sack.de

Buch, Englisch, 259 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 532 g

Berton

Practical RHEL AI

Designing, Deploying and Scaling AI Solutions with Red Hat Enterprise Linux
1. Auflage 2026
ISBN: 979-8-8688-1900-1
Verlag: APRESS L.P.

Designing, Deploying and Scaling AI Solutions with Red Hat Enterprise Linux

Buch, Englisch, 259 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 532 g

ISBN: 979-8-8688-1900-1
Verlag: APRESS L.P.


If you're looking to build, deploy, and scale AI solutions with confidence, is the guide you need. Whether you're an AI developer, data scientist, or DevOps engineer, this book walks you through the entire process—from setting up your AI development environment to optimizing and securing enterprise-scale AI workloads on Red Hat Enterprise Linux.

You'll start with the essentials: installation, configuration, and leveraging powerful machine learning frameworks like TensorFlow, PyTorch, and Scikit-learn. Then, you’ll dive into the tools that make AI deployment seamless—GPU acceleration, containerization, and cloud integration with AWS and Azure.

Security and compliance are non-negotiable in AI, and this book makes sure you get them right. Learn how to protect your models with encryption, implement role-based access control (RBAC), and meet industry standards like GDPR and HIPAA. You’ll also master AI workload monitoring with Prometheus and Grafana, troubleshoot common issues, and automate deployments with Ansible. However, theory only gets you so far—real-world applications make the difference. Through hands-on examples and case studies in healthcare, finance, and manufacturing, you’ll see how RHEL AI powers innovation in the field. Plus, you'll get insights into the future of AI, including Explainable AI (XAI), Edge AI, and AI governance. With you’re not just learning AI—you’re building AI solutions that scale.

You Will:

  • Learn to Install and Configure RHEL AI to optimize machine learning workloads
  • Understand how to train and Deploy AI models using TensorFlow, PyTorch, and Scikit-learn
  • Explore how to Integrate and Implement GPU acceleration, cloud computing, and containerization for scalable AI solutions
  • Learn to Secure and Evaluate AI workloads with encryption, RBAC, and compliance best practices

·      This Book is for:

AI and machine learning engineers, DevOps and system administrators, Data scientists, and IT professionals and cloud architects

Berton Practical RHEL AI jetzt bestellen!

Zielgruppe


Professional/practitioner


Autoren/Hrsg.


Weitere Infos & Material


Chapter 1: Introduction to RHEL AI.- Chapter 2: Setting Up RHEL AI.- Chapter 3: Exploring Core Components.- Chapter 4: Advanced Features of RHEL AI.- Chapter 5: Developing Custom AI Applications.- Chapter 6: Monitoring and Maintenance.- Chapter 7: Use Cases and Best Practices.- Chapter 8: Future Trends in RHEL AI.- Chapter 9: Community and Support.


Luca Berton is a seasoned AI Automation and DevOps expert with more than 18 years of experience in IT, specializing in cloud infrastructure, machine learning platforms, and enterprise-scale automation. He has led major AI and automation initiatives for financial institutions such as JPMorgan Chase, Société Générale, ABN Ambro and BPCE, designing GPU-accelerated Kubernetes/OpenShift AI clusters and optimizing CI/CD pipelines for regulated environments.

Luca is the creator of the popular Ansible Pilot project and author of several best-selling technical books, including and . A former Red Hat engineer, he has made significant contributions to the open source ecosystem, particularly in enhancing Ansible's capabilities for cloud and AI workloads.

Widely recognized for his teaching and community leadership, Luca regularly shares his expertise through courses on Coursera, Pluralsight, and Educative, and speaks at global tech conferences on topics ranging from MLOps to infrastructure automation.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.