Berrou | Codes and turbo codes | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 400 Seiten

Reihe: Collection IRIS

Berrou Codes and turbo codes


1. Auflage 2011
ISBN: 978-2-8178-0039-4
Verlag: Springer Paris
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 400 Seiten

Reihe: Collection IRIS

ISBN: 978-2-8178-0039-4
Verlag: Springer Paris
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book is devoted to one of the essential functions of modern telecommunications systems: channel coding or error correction coding. Its main topic is iteratively decoded algebraic codes, convolutional codes and concatenated codes.

Berrou Codes and turbo codes jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Title Page ;3
2;Copyright Page ;4
3;Codes and Turbo Codes;5
4;Foreword;7
5;Table of Contents;10
6;Chapter 1 Introduction;15
6.1;1.1 Digital messages;17
6.2;1.2 A first code;18
6.3;1.3 Hard input decoding and soft input decoding;21
6.4;1.4 Hard output decoding and soft output decoding;25
6.5;1.5 The performance measure;25
6.6;1.6 What is a good code?;29
6.7;1.7 Families of codes;31
7;Chapter 2 Digital communications;33
7.1;2.1 DigitalModulations;33
7.1.1;2.1.1 Introduction;33
7.1.2;2.1.2 Linear Memoryless Modulations;36
7.1.2.1;Amplitude-shift keying with M states: M-ASK;36
7.1.2.2;Phase Shift Keying with M states (M-PSK);39
7.1.2.3;Quadrature Amplitude Modulation using two quadrature carriers (MQAM);40
7.1.3;2.1.3 Memoryless modulation with M states (M-FSK);43
7.1.4;2.1.4 Modulations with memory by continuous phase frequency shift keying (CPFSK);45
7.1.4.1;Continuous phase-frequency-shift keying with modulation index h = 1/2: Minimum Shift Keying (MSK);46
7.1.4.2;L-ary Raised Cosine modulation (L-RC);48
7.1.4.3;Gaussian minimum shift keying modulation (GMSK);49
7.2;2.2 Structure and performance of the optimal receiver on a Gaussian channel;51
7.2.1;2.2.1 Structure of the coherent receiver;51
7.2.2;2.2.2 Performance of the coherent receiver;56
7.2.2.1;Amplitude shift keying with M states;56
7.2.2.2;Phase shift keying with M states;60
7.2.2.3;Amplitude modulation on two quadrature carriers – M-QAM;63
7.2.2.4;Frequency shift keying – M-FSK;66
7.2.2.5;Continuous phase frequency shift keying – CPFSK;69
7.3;2.3 Transmission on a band-limited channel;73
7.3.1;2.3.1 Introduction;73
7.3.2;2.3.2 Intersymbol interference;74
7.3.3;2.3.3 Condition of absence of ISI: Nyquist criterion;77
7.3.3.1;Optimal distribution of filtering between transmission and reception;80
7.3.4;2.3.4 Expression of the error probability in presence of Nyquist filtering;82
7.4;2.4 Transmission on fading channels;83
7.4.1;2.4.1 Characterization of a fading channel;83
7.4.1.1;Coherence bandwidth;84
7.4.1.2;Coherence time;87
7.5;2.4.2 Transmission on non-frequency-selective slow-fading channels;87
7.5.1;Performance on a Rayleigh channel;87
7.5.2;Performance on a Rayleigh channel with diversity;89
7.5.3;Transmission on a slow-fading frequency-selective channel;92
7.5.4;Transmission with equalization at reception;95
8;Chapter 3 Theoretical limits;96
8.1;3.1 Information theory;96
8.1.1;3.1.1 Transmission channel;96
8.1.2;3.1.2 An example: the binary symmetric channel;97
8.1.2.1;Configurations of errors on the binary symmetric channel;97
8.1.2.2;Mutual information and capacity of the binary symmetric channel;98
8.1.3;3.1.3 Overview of the fundamental coding theorem;99
8.1.4;3.1.4 Geometrical interpretation;100
8.1.5;3.1.5 Random coding;101
8.1.5.1;Codes imitating random coding;102
8.2;3.2 Theoretical limits to performance;104
8.2.1;3.2.1 Binary input and real output channel;104
8.2.2;3.2.2 Capacity of a transmission channel;105
8.2.2.1;Shannon limit of a band-limited continuous input and output Gaussian channel;106
8.2.2.2;Capacity of a discrete input Gaussian channel;106
8.2.2.3;Capacity of the Rayleigh channel;108
8.3;3.3 Practical limits to performance;109
8.3.1;3.3.1 Gaussian binary input channel;109
8.3.2;3.3.2 Gaussian continuous input channel;110
8.3.3;3.3.3 Some examples of limits;112
8.4;3.4 Minimum distances required;113
8.4.1;3.4.1 MHD required with 4-PSK modulation;113
8.4.2;3.4.2 MHD required with 8-PSK modulation;115
8.4.3;3.4.3 MHD required with 16-QAM modulation;117
8.5;Bibliography;120
9;Chapter 4 Block codes;121
9.1;4.1 Block codes with binary symbols;122
9.1.1;4.1.1 Generator matrix of a binary block code;122
9.1.2;4.1.2 Dual code and parity check matrix;124
9.1.3;4.1.3 Minimum distance;125
9.1.4;4.1.4 Extended codes and shortened codes;126
9.1.5;4.1.5 Product codes;127
9.1.6;4.1.6 Examples of binary block codes;127
9.1.6.1;Parity check code;127
9.1.6.2;Repetition code;128
9.1.6.3;Hamming code;129
9.1.6.4;Maximum length code;130
9.1.6.5;Hadamard code;130
9.1.6.6;Reed-Muller codes;131
9.1.7;4.1.7 Cyclic codes;132
9.1.7.1;Definition and polynomial representation;132
9.1.7.2;Cyclic code in systematic form;134
9.1.7.3;Implementation of an encoder;136
9.1.7.4;BCH codes;137
9.2;4.2 Block codes with non-binary symbols;142
9.2.1;4.2.1 Reed-Solomon codes;142
9.2.2;4.2.2 Implementing the encoder;144
9.3;4.3 Decoding and performance of codes with binary symbols;144
9.3.1;4.3.1 Error detection;144
9.3.1.1;Detection capability;145
9.3.1.2;Probability of non-detection of errors;145
9.3.2;4.3.2 Error correction;146
9.3.2.1;Hard decoding;146
9.3.2.2;Soft decoding;149
9.4;4.4 Decoding and performance of codes with non-binary symbols . .;155
9.4.1;4.4.1 Hard input decoding of Reed-Solomon codes;155
9.4.2;4.4.2 Peterson’s directmethod;156
9.4.2.1;Description of the algorithm for codes with non-binary symbols;156
9.4.2.2;Simplification of Peterson’s algorithm for binary codes;160
9.4.2.3;Chien algorithm;162
9.4.3;4.4.3 Iterativemethod;163
9.4.3.1;Berlekamp-Massey algorithm for codes with non-binary symbols;164
9.4.3.2;Euclid’s algorithm;166
9.4.3.3;Calculating coefficients ej by a transform;167
9.4.3.4;Berlekamp-Massey algorithm for binary cyclic codes;169
9.4.3.5;Euclid’s algorithm for binary codes;170
9.4.4;4.4.4 Hard input decoding performance of Reed-Solomon codes;171
9.5;Bibliography;172
9.6;Appendix: Notions about Galois fields and minimal polynomials ;173
9.6.1;Definition;173
9.6.2;Primitive element of a Galois field;174
9.6.3;Minimal polynomial with coefficients in F2 associated with an element of a Galois field Fq;174
9.6.4;Minimal polynomial with coefficients in Fq associated with an element in a Galois field Fq;176
9.6.5;Primitive polynomials;176
10;Chapter 5 Convolutional codes and their decoding;179
10.1;5.1 History;179
10.2;5.2 Representations of convolutional codes;181
10.2.1;5.2.1 Generic representation of a convolutional encoder;181
10.2.2;5.2.2 Polynomial representation;184
10.2.3;5.2.3 Tree of a code;185
10.2.4;5.2.4 Trellis of a code;185
10.2.5;5.2.5 Statemachine of a code;188
10.3;5.3 Code distances and performance;190
10.3.1;5.3.1 Choosing a good code;190
10.3.2;5.3.2 RTZ sequences;190
10.3.3;5.3.3 Transfer function and distance spectrum;192
10.3.4;5.3.4 Performance;195
10.4;5.4 Decoding convolutional codes;198
10.4.1;5.4.1 Model of the transmission chain and notations;199
10.4.2;5.4.2 The Viterbi algorithm;199
10.4.2.1;Example of applying the Viterbi algorithm;202
10.4.3;5.4.3 The Maximum A Posteriori algorithm or MAP algorithm;204
10.5;5.5 Convolutional block codes;204
10.5.1;5.5.1 Trellis termination;205
10.5.1.1;Classical trellis termination;205
10.5.1.2;Tail-biting;206
10.5.2;5.5.2 Puncturing;208
10.6;Bibliography;210
11;Chapter 6 Concatenated codes;212
11.1;6.1 Parallel concatenation and serial concatenation;214
11.2;6.2 Parallel concatenation and LDPC codes;217
11.3;6.3 Permutations;219
11.4;6.4 Turbo crossword;219
11.5;Bibliography;222
12;Chapter 7 Convolutional turbo codes;223
12.1;7.1 The history of turbo codes;223
12.2;7.2 Multiple concatenation of RSC codes;225
12.3;7.3 Turbo codes;227
12.3.1;7.3.1 Termination of constituent codes;231
12.3.2;7.3.2 The permutation function;232
12.3.2.1;Regular permutation;233
12.3.2.2;Necessity for disorder;235
12.3.2.3;Intra-symbol disorder;237
12.3.2.4;Irregular permutations;239
12.3.2.5;Quadratic Permutation;241
12.4;7.4 Decoding turbo codes;245
12.4.1;7.4.1 Turbo decoding;245
12.4.2;7.4.2 SISO decoding and extrinsic information;248
12.4.2.1;Notations;249
12.4.2.2;Decoding following the Maximum A Posteriori (MAP) criterion;250
12.4.2.3;The simplified Max-Log-MAP or SubMAP algorithm;252
12.4.3;7.4.3 Practical considerations;255
12.5;7.5 m-binary turbo codes;259
12.5.1;7.5.1 m-binary RSC encoders;259
12.5.2;7.5.2 m-binary turbo codes;261
12.5.2.1;8-state double-binary turbo code;263
12.5.2.2;16-state double-binary turbo code;264
12.6;7.6 Analysis tools;266
12.6.1;7.6.1 Theoretical performance ;266
12.6.2;7.6.2 Asymptotic behaviour;266
12.6.2.1;Error impulse method;267
12.6.2.2;Modified error impulse method;269
12.6.2.3;Double error impulse method;269
12.6.3;7.6.3 Convergence;269
12.6.3.1;Transfer function for a SISO decoder of extrinsic information;270
12.6.3.1.1;a. Definition of the mutual information (MI);270
12.6.3.1.2;b. Definition of the a priori mutual information;271
12.6.3.1.3;c. Calculation of the output mutual information;272
12.6.3.1.4;d. Practical method to obtain the transfer function of the extrinsic information;273
12.6.3.1.5;e. An example;274
12.6.3.2;EXIT chart;274
12.7;Bibliography;276
13;Chapter 8 Turbo product codes;281
13.1;8.1 History;281
13.2;8.2 Product codes;281
13.2.1;Definition;282
13.2.2;Example 8.1;282
13.3;8.3 Hard input decoding of product codes;283
13.3.1;8.3.1 Row-column decoding;283
13.3.1.1;Property;283
13.3.1.2;Example 8.2;284
13.3.2;8.3.2 The Reddy-Robinson algorithm;284
13.3.2.1;Example 8.3;286
13.4;8.4 Soft input decoding of product codes;287
13.4.1;8.4.1 The Chase algorithm with weighted input;287
13.4.1.1;Example 8.4;289
13.4.2;8.4.2 Performance of the Chase-Pyndiah algorithm;290
13.4.3;8.4.3 The Fang-Battail algorithm;290
13.4.3.1;Example 8.5;292
13.4.4;8.4.4 The Hartmann-Nazarov algorithm;295
13.4.4.1;Fast Hadamard transform;297
13.4.4.2;Example 8.6;298
13.4.5;8.4.5 Other soft input decoding algorithms;299
13.5;8.5 Implantation of the Chase-Pyndiah algorithm;301
13.6;Bibliography;303
14;Chapter 9 LDPC codes;306
14.1;9.1 Principle of LDPC codes;306
14.1.1;9.1.1 Parity check code;307
14.1.1.1;Definition;307
14.1.1.2;Parity code with three bits;307
14.1.1.3;Parity check code with n bits;309
14.1.2;9.1.2 Definition of an LDPC code;310
14.1.2.1;Linear block codes;310
14.1.2.2;Low density parity check codes;311
14.1.2.3;Coding rate;312
14.1.3;9.1.3 Encoding;313
14.1.3.1;Generic encoding;313
14.1.3.2;Specific constructions;315
14.1.3.3;Summary;316
14.1.3.4;Analogy between an LDPC code and a turbo code;316
14.1.4;9.1.4 Decoding LDPC codes;317
14.1.4.1;Hard input algorithm;318
14.1.4.2;Belief propagation algorithm;318
14.1.5;9.1.5 Randomconstruction of LDPC codes;321
14.1.5.1;Optimization of irregularity profiles;321
14.1.5.2;Optimization of cycle size;323
14.1.5.3;Selecting the code by the impulse method;323
14.1.5.4;Selecting the code by simulation;323
14.1.6;9.1.6 Some geometrical constructions of LDPC codes;324
14.1.6.1;Cayley / Ramanujan constructions;324
14.1.6.2;Kou, Lin and Fossorier’s Euclidian / Projective Geometry LDPC;325
14.1.6.3;Constructions based on permutation matrices;325
14.1.6.4;Matrices based on Pseudo random generators;326
14.1.6.5;Array-based LDPC;326
14.1.6.6;BIBDs, Latin rectangles;326
14.2;9.2 Architecture for decoding LDPC codes for the Gaussian channel;327
14.2.1;9.2.1 Analysis of the complexity;327
14.2.2;9.2.2 Architecture of a generic node processor (GNP);328
14.2.2.1;Choice of a generic operator;331
14.2.3;9.2.3 Generic architecture for message propagation;331
14.2.3.1;Presentation of the model;331
14.2.3.2;Example of an implementation;333
14.2.4;9.2.4 Combining parameters of the architecture;334
14.2.5;9.2.5 Example of synthesis of an LDPC decoder architecture . .;337
14.2.5.1;Flooding schedule (according to parities);337
14.2.5.2;Horizontal interleaving schedule;338
14.2.6;9.2.6 Sub-optimal decoding algorithm;339
14.2.6.1;Single message decoding algorithm (. = 1);339
14.2.6.2;Sub-optimal PNP algorithms (. > 1);341
14.2.7;9.2.7 Influence of quantization;342
14.2.8;9.2.8 State of the art of published LDPC decoder architectures;344
14.3;Bibliography;346
15;Chapter 10 Turbo codes and large spectral efficiency transmissions;352
15.1;10.1 Turbo trellis coded modulation (TTCM);352
15.2;10.2 Pragmatic turbo coded modulation;356
15.3;Bibliography ;366
16;Chapter 11 The turbo principle applied to equalization and detection;367
16.1;11.1 Turbo equalization;368
16.1.1;11.1.1 Multipath channels and intersymbol interference;368
16.1.2;11.1.2 The equalization function;370
16.1.3;11.1.3 Combining equalization and decoding;374
16.1.4;11.1.4 Principle of turbo equalization;377
16.1.5;11.1.5 MAP turbo equalization;380
16.1.5.1;Implementation of the BCJR-MAP equalizer;380
16.1.5.2;Example of performance;384
16.1.5.3;Complexity of the MAP turbo equalizer and alternative solutions;386
16.1.5.4;Architectures and applications;387
16.1.6;11.1.6 MMSE turbo equalization;389
16.1.6.1;Principle of soft-input soft-ouput linear MMSE equalization;390
16.1.6.2;Adaptive implementation of the equalizer;398
16.1.6.3;Examples of performance;400
16.1.6.4;Example of implementation and applications;403
16.2;11.2 Multi-user turbo detection and its application to CDMA systems;404
16.2.1;11.2.1 Introduction and some notations;404
16.2.2;11.2.2 Multi-user detection;405
16.2.2.1;Standard receiver;405
16.2.2.2;Optimal joint detection;406
16.2.2.3;Decorrelator detector;407
16.2.2.4;Linear MMSE detector;407
16.2.2.5;Iterative detector;408
16.2.3;11.2.3 Turbo CDMA;411
16.2.3.1;Turbo SIC detector;411
16.2.3.2;Some simulations;412
16.2.3.3;Turbo SIC/RAKE detector;412
16.3;11.3 Conclusions;413
16.4;Bibliography;415
17;Index;421



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.