Berridge / Crouchley | Multivariate Generalized Linear Mixed Models Using R | Buch | 978-1-4398-1326-3 | sack.de

Buch, Englisch, 304 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 625 g

Berridge / Crouchley

Multivariate Generalized Linear Mixed Models Using R


1. Auflage 2011
ISBN: 978-1-4398-1326-3
Verlag: CRC Press

Buch, Englisch, 304 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 625 g

ISBN: 978-1-4398-1326-3
Verlag: CRC Press


Multivariate Generalized Linear Mixed Models Using R presents robust and methodologically sound models for analyzing large and complex data sets, enabling readers to answer increasingly complex research questions. The book applies the principles of modeling to longitudinal data from panel and related studies via the Sabre software package in R.

A Unified Framework for a Broad Class of Models

The authors first discuss members of the family of generalized linear models, gradually adding complexity to the modeling framework by incorporating random effects. After reviewing the generalized linear model notation, they illustrate a range of random effects models, including three-level, multivariate, endpoint, event history, and state dependence models. They estimate the multivariate generalized linear mixed models (MGLMMs) using either standard or adaptive Gaussian quadrature. The authors also compare two-level fixed and random effects linear models. The appendices contain additional information on quadrature, model estimation, and endogenous variables, along with SabreR commands and examples.

Improve Your Longitudinal Study
In medical and social science research, MGLMMs help disentangle state dependence from incidental parameters. Focusing on these sophisticated data analysis techniques, this book explains the statistical theory and modeling involved in longitudinal studies. Many examples throughout the text illustrate the analysis of real-world data sets. Exercises, solutions, and other material are available on a supporting website.

Berridge / Crouchley Multivariate Generalized Linear Mixed Models Using R jetzt bestellen!

Zielgruppe


Academic

Weitere Infos & Material


Introduction. Generalized Linear Models for Continuous/Interval Scale Data. Generalized Linear Models for Other Types of Data. Family of Generalized Linear Models. Mixed Models for Continuous/Interval Scale Data. Mixed Models for Binary Data. Mixed Models for Ordinal Data. Mixed Models for Count Data. Family of Two-Level Generalized Linear Models. Three-Level Generalized Linear Models. Models for Multivariate Data. Models for Duration and Event History Data. Stayers, Non-Susceptibles, and Endpoints. Handling Initial Conditions/State Dependence in Binary Data. Incidental Parameters: An Empirical Comparison of Fixed Effects and Random Effects Models. Appendices. Bibliography.


Damon M. Berridge is a senior lecturer in the Department of Mathematics and Statistics at Lancaster University. Dr. Berridge has nearly 20 years of experience as a statistical consultant. His research focuses on the modeling of binary and ordinal recurrent events through random effects models, with application in medical and social statistics.

Robert Crouchley is a professor of applied statistics and director of the Centre for e-Science at Lancaster University. His research interests involve the development of statistical methods and software for causal inference in nonexperimental data. These methods include models for errors in variables, missing data, heterogeneity, state dependence, nonstationarity, event history data, and selection effects.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.