Bernatz | Fourier Series and Numerical Methods for Partial Differential Equations | E-Book | sack.de
E-Book

E-Book, Englisch, 332 Seiten, E-Book

Bernatz Fourier Series and Numerical Methods for Partial Differential Equations


1. Auflage 2010
ISBN: 978-0-470-65137-7
Verlag: John Wiley & Sons
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, 332 Seiten, E-Book

ISBN: 978-0-470-65137-7
Verlag: John Wiley & Sons
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



The importance of partial differential equations (PDEs) in modelingphenomena in engineering as well as in the physical, natural, andsocial sciences is well known by students and practitioners inthese fields. Striking a balance between theory and applications,Fourier Series and Numerical Methods for Partial DifferentialEquations presents an introduction to the analytical andnumerical methods that are essential for working with partialdifferential equations. Combining methodologies from calculus,introductory linear algebra, and ordinary differential equations(ODEs), the book strengthens and extends readers' knowledge of thepower of linear spaces and linear transformations for purposes ofunderstanding and solving a wide range of PDEs.
The book begins with an introduction to the general terminologyand topics related to PDEs, including the notion of initial andboundary value problems and also various solution techniques.Subsequent chapters explore:
* The solution process for Sturm-Liouville boundary value ODEproblems and a Fourier series representation of the solution ofinitial boundary value problems in PDEs
* The concept of completeness, which introduces readers toHilbert spaces
* The application of Laplace transforms and Duhamel's theorem tosolve time-dependent boundary conditions
* The finite element method, using finite dimensionalsubspaces
* The finite analytic method with applications of theFourier series methodology to linear version of non-linearPDEs
Throughout the book, the author incorporates his ownclass-tested material, ensuring an accessible and easy-to-followpresentation that helps readers connect presented objectives withrelevant applications to their own work. Maple is used throughoutto solve many exercises, and a related Web site features Mapleworksheets for readers to use when working with the book's one- andmulti-dimensional problems.
Fourier Series and Numerical Methods for Partial DifferentialEquations is an ideal book for courses on applied mathematicsand partial differential equations at the upper-undergraduate andgraduate levels. It is also a reliable resource for researchers andpractitioners in the fields of mathematics, science, andengineering who work with mathematical modeling of physicalphenomena, including diffusion and wave aspects.

Bernatz Fourier Series and Numerical Methods for Partial Differential Equations jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Preface.
Acknowledgments.
1 Introduction.
1.1 Terminology and Notation.
1.2 Classification.
1.3 Canonical Forms.
1.4 Common PDEs.
1.5 Cauchy-Kowalevski Theorem.
1.6 Initial Boundary Value Problems.
1.7 Solution Techniques.
1.8 Separation of Variables.
Exercises.
2 Fourier Series.
2.1 Vector Spaces.
2.2 The Integral as an Inner Product.
2.3 Principle of Superposition.
2.4 General Fourier Series.
2.5 Fourier Sine Series on (0, c).
2.6 Fourier Cosine Series on (0, c).
2.7 Fourier Series on (-c; c).
2.8 Best Approximation.
2.9 Bessel's Inequality.
2.10 Piecewise Smooth Functions.
2.11 Fourier Series Convergence.
2.12 2c-Periodic Functions.
2.13 Concluding Remarks.
Exercises.
3 Sturm-Liouville Problems.
3.1 Basic Examples.
3.2 Regular Sturm-Liouville Problems.
3.3 Properties.
3.4 Examples.
3.5 Bessel's Equation.
3.6 Legendre's Equation.
Exercises.
4 Heat Equation.
4.1 Heat Equation in 1D.
4.2 Boundary Conditions.
4.3 Heat Equation in 2D.
4.4 Heat Equation in 3D.
4.5 Polar-Cylindrical Coordinates.
4.6 Spherical Coordinates.
Exercises.
5 Heat Transfer in 1D.
5.1 Homogeneous IBVP.
5.2 Semihomogeneous PDE.
5.3 Nonhomogeneous Boundary Conditions.
5.4 Spherical Coordinate Example.
Exercises.
6 Heat Transfer in 2D and 3D.
6.1 Homogeneous 2D IBVP.
6.2 Semihomogeneous 2D IBVP.
6.3 Nonhomogeneous 2D IBVP.
6.4 2D BVP: Laplace and Poisson Equations.
6.5 Nonhomogeneous 2D Example.
6.6 Time-Dependent BCs.
6.7 Homogeneous 3D IBVP.
Exercises.
7 Wave Equation.
7.1 Wave Equation in 1D.
7.2 Wave Equation in 2D.
Exercises.
8 Numerical Methods: an Overview.
8.1 Grid Generation.
8.2 Numerical Methods.
8.3 Consistency and Convergence.
9 The Finite Difference Method.
9.1 Discretization.
9.2 Finite Difference Formulas.
9.3 1D Heat Equation.
9.4 Crank-Nicolson Method.
9.5 Error and Stability.
9.6 Convergence in Practice.
9.7 1D Wave Equation.
9.8 2D Heat Equation in Cartesian Coordinates.
9.9 Two-Dimensional Wave Equation.
9.10 2D Heat Equation in Polar Coordinates.
Exercises.
10 Finite Element Method.
10.1 General Framework.
10.2 1D Elliptical Example.
10.3 2D Elliptical Example.
10.4 Error Analysis.
10.5 1D Parabolic Example.
Exercises.
11 Finite Analytic Method.
11.1 1D Transport Equation.
11.2 2D Transport Equation.
11.3 Convergence and Accuracy.
Exercises.
Appendix A: FA 1D Case.
Appendix B: FA 2D Case.
References.
Index.


RICHARD A. BERNATZ, PhD, is Professor in the Department of Mathematics at Luther College. Dr. Bernatz is the author of numerous journal articles in his areas of research interest, which include climatology, mathematical models of watersheds, and computational fluid dynamics with applications in meteorology.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.