E-Book, Englisch, 624 Seiten
Reihe: Food Science and Technology
E-Book, Englisch, 624 Seiten
Reihe: Food Science and Technology
ISBN: 978-0-08-092023-8
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Dr. Berk is a chemical engineer and food scientist with a long history of work in food engineering, including appointments as a professor at Technion IIT, MIT, and Agro-Paris and as a consultant at UNIDO, FAO, the Industries Development Corporation, and Nestle. He is the recipient of the International Association of Food and Engineering Life Achievement Award (2011), and has written 6 books (3 with Elsevier) and numerous papers and reviews. His main research interests include heat and mass transfer and kinetics of deterioration.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Food Process Engineering and Technology;4
3;Copyright Page;5
4;Contents;6
5;Introduction – Food is Life;18
6;Chapter 1 Physical properties of food materials;24
6.1;1.1 Introduction;24
6.2;1.2 Mechanical properties;25
6.2.1;1.2.1 Definitions;25
6.2.2;1.2.2 Rheological models;26
6.3;1.3 Thermal properties;27
6.4;1.4 Electrical properties;28
6.5;1.5 Structure;28
6.6;1.6 Water activity;30
6.6.1;1.6.1 The importance of water in foods;30
6.6.2;1.6.2 Water activity, definition and determination;31
6.6.3;1.6.3 Water activity: prediction;31
6.6.4;1.6.4 Water vapor sorption isotherms;33
6.6.5;1.6.5 Water activity: effect on food quality and stability;36
6.7;1.7 Phase transition phenomena in foods;36
6.7.1;1.7.1 The glassy state in foods;36
6.7.2;1.7.2 Glass transition temperature;37
7;Chapter 2 Fluid flow;44
7.1;2.1 Introduction;44
7.2;2.2 Elements of fluid dynamics;44
7.2.1;2.2.1 Viscosity;44
7.2.2;2.2.2 Fluid flow regimes;45
7.2.3;2.2.3 Typical applications of Newtonian laminar flow;47
7.2.3.1;2.2.3a Laminar flow in a cylindrical channel (pipe or tube);47
7.2.3.2;2.2.3b Laminar fluid flow on flat surfaces and channels;50
7.2.3.3;2.2.3c Laminar fluid flow around immersed particles;51
7.2.3.4;2.2.3d Fluid flow through porous media;53
7.2.4;2.2.4 Turbulent fluid flow;53
7.2.4.1;2.2.4a Turbulent Newtonian fluid flow in a cylindrical channel (tube or pipe);54
7.2.4.2;2.2.4b Turbulent fluid flow around immersed particles;56
7.3;2.3 Flow properties of fluids;57
7.3.1;2.3.1 Types of fluid flow behavior;57
7.3.2;2.3.2 Non-Newtonian fluid flow in pipes;58
7.4;2.4 Transportation of fluids;60
7.4.1;2.4.1 Energy relations, the Bernoulli Equation;60
7.4.2;2.4.2 Pumps: Types and operation;63
7.4.3;2.4.3 Pump selection;69
7.4.4;2.4.4 Ejectors;72
7.4.5;2.4.5 Piping;73
7.5;2.5 Flow of particulate solids (powder flow);73
7.5.1;2.5.1 Introduction;73
7.5.2;2.5.2 Flow properties of particulate solids;74
7.5.3;2.5.3 Fluidization;79
7.5.4;2.5.4 Pneumatic transport;82
8;Chapter 3 Heat and mass transfer, basic principles;86
8.1;3.1 Introduction;86
8.2;3.2 Basic relations in transport phenomena;86
8.2.1;3.2.1 Basic laws of transport;86
8.2.2;3.2.2 Mechanisms of heat and mass transfer;87
8.3;3.3 Conductive heat and mass transfer;87
8.3.1;3.3.1 The Fourier and Fick laws;87
8.3.2;3.3.2 Integration of Fourier's and Fick's laws for steady-state conductive transport;88
8.3.3;3.3.3 Thermal conductivity, thermal diffusivity and molecular diffusivity;90
8.3.4;3.3.4 Examples of steady-state conductive heat and mass transfer processes;93
8.4;3.4 Convective heat and mass transfer;98
8.4.1;3.4.1 Film (or surface) heat and mass transfer coefficients;98
8.4.2;3.4.2 Empirical correlations for convection heat and mass transfer;101
8.4.3;3.4.3 Steady-state interphase mass transfer;104
8.5;3.5 Unsteady state heat and mass transfer;106
8.5.1;3.5.1 The 2nd Fourier and Fick laws;106
8.5.2;3.5.2 Solution of Fourier's second law equation for an infinite slab;107
8.5.3;3.5.3 Transient conduction transfer in finite solids;109
8.5.4;3.5.4 Transient convective transfer in a semi-infinite body;111
8.5.5;3.5.5 Unsteady state convective transfer;112
8.6;3.6 Heat transfer by radiation;113
8.6.1;3.6.1 Interaction between matter and thermal radiation;113
8.6.2;3.6.2 Radiation heat exchange between surfaces;114
8.6.3;3.6.3 Radiation combined with convection;117
8.7;3.7 Heat exchangers;117
8.7.1;3.7.1 Overall coefficient of heat transfer;117
8.7.2;3.7.2 Heat exchange between flowing fluids;119
8.7.3;3.7.3 Fouling;121
8.7.4;3.7.4 Heat exchangers in the food process industry;122
8.8;3.8 Microwave heating;124
8.8.1;3.8.1 Basic principles of microwave heating;125
8.9;3.9 Ohmic heating;126
8.9.1;3.9.1 Introduction;126
8.9.2;3.9.2 Basic principles;127
8.9.3;3.9.3 Applications and equipment;129
9;Chapter 4 Reaction kinetics;132
9.1;4.1 Introduction;132
9.2;4.2 Basic concepts;133
9.2.1;4.2.1 Elementary and non-elementary reactions;133
9.2.2;4.2.2 Reaction order;133
9.2.3;4.2.3 Effect of temperature on reaction kinetics;136
9.3;4.3 Kinetics of biological processes;138
9.3.1;4.3.1 Enzyme-catalyzed reactions;138
9.3.2;4.3.2 Growth of microorganisms;139
9.4;4.4 Residence time and residence time distribution;140
9.4.1;4.4.1 Reactors in food processing;140
9.4.2;4.4.2 Residence time distribution;141
10;Chapter 5 Elements of process control;146
10.1;5.1 Introduction;146
10.2;5.2 Basic concepts;146
10.3;5.3 Basic control structures;148
10.3.1;5.3.1 Feedback control;148
10.3.2;5.3.2 Feed-forward control;148
10.3.3;5.3.3 Comparative merits of control strategies;149
10.4;5.4 The block diagram;149
10.5;5.5 Input, output and process dynamics;150
10.5.1;5.5.1 First order response;150
10.5.2;5.5.2 Second order systems;152
10.6;5.6 Control modes (control algorithms);153
10.6.1;5.6.1 On-off (binary) control;153
10.6.2;5.6.2 Proportional (P) control;155
10.6.3;5.6.3 Integral (I) control;156
10.6.4;5.6.4 Proportional-integral (PI) control;157
10.6.5;5.6.5 Proportional-integral-differential (PID) control;157
10.6.6;5.6.6 Optimization of control;158
10.7;5.7 The physical elements of the control system;159
10.7.1;5.7.1 The sensors (measuring elements);159
10.7.2;5.7.2 The controllers;166
10.7.3;5.7.3 The actuators;166
11;Chapter 6 Size reduction;170
11.1;6.1 Introduction;170
11.2;6.2 Particle size and particle size distribution;171
11.2.1;6.2.1 Defining the size of a single particle;171
11.2.2;6.2.2 Particle size distribution in a population of particles; defining a 'mean particle size';172
11.2.3;6.2.3 Mathematical models of PSD;175
11.2.4;6.2.4 A note on particle shape;177
11.3;6.3 Size reduction of solids, basic principles;180
11.3.1;6.3.1 Mechanism of size reduction in solids;180
11.3.2;6.3.2 Particle size distribution after size reduction;180
11.3.3;6.3.3 Energy consumption;180
11.4;6.4 Size reduction of solids, equipment and methods;182
11.4.1;6.4.1 Impact mills;183
11.4.2;6.4.2 Pressure mills;184
11.4.3;6.4.3 Attrition mills;185
11.4.4;6.4.4 Cutters and choppers;187
12;Chapter 7 Mixing;192
12.1;7.1 Introduction;192
12.2;7.2 Mixing of fluids (blending);192
12.2.1;7.2.1 Types of blenders;192
12.2.2;7.2.2 Flow patterns in fluid mixing;194
12.2.3;7.2.3 Energy input in fluid mixing;195
12.3;7.3 Kneading;198
12.4;7.4 In-flow mixing;201
12.5;7.5 Mixing of particulate solids;201
12.5.1;7.5.1 Mixing and segregation;201
12.5.2;7.5.2 Quality of mixing, the concept of 'mixedness';201
12.5.3;7.5.3 Equipment for mixing particulate solids;204
12.6;7.6 Homogenization;206
12.6.1;7.6.1 Basic principles;206
12.6.2;7.6.2 Homogenizers;208
13;Chapter 8 Filtration;212
13.1;8.1 Introduction;212
13.2;8.2 Depth filtration;213
13.3;8.3 Surface (barrier) filtration;215
13.3.1;8.3.1 Mechanisms;215
13.3.2;8.3.2 Rate of filtration;216
13.3.3;8.3.3 Optimization of the filtration cycle;221
13.3.4;8.3.4 Characteristics of filtration cakes;222
13.3.5;8.3.5 The role of cakes in filtration;223
13.4;8.4 Filtration equipment;224
13.4.1;8.4.1 Depth filters;224
13.4.2;8.4.2 Barrier (surface) filters;224
13.5;8.5 Expression;228
13.5.1;8.5.1 Introduction;228
13.5.2;8.5.2 Mechanisms;228
13.5.3;8.5.3 Applications and equipment;230
14;Chapter 9 Centrifugation;234
14.1;9.1 Introduction;234
14.2;9.2 Basic principles;235
14.2.1;9.2.1 The continuous settling tank;235
14.2.2;9.2.2 From the settling tank to the tubular centrifuge;237
14.2.3;9.2.3 The baffled settling tank and the disc-bowl centrifuge;240
14.2.4;9.2.4 Liquid–liquid separation;241
14.3;9.3 Centrifuges;243
14.3.1;9.3.1 Tubular centrifuges;244
14.3.2;9.3.2 Disc-bowl centrifuges;245
14.3.3;9.3.3 Decanter centrifuges;247
14.3.4;9.3.4 Basket centrifuges;247
14.4;9.4 Cyclones;248
15;Chapter 10 Membrane processes;250
15.1;10.1 Introduction;250
15.2;10.2 Tangential filtration;251
15.3;10.3 Mass transfer through MF and UF membranes;252
15.3.1;10.3.1 Solvent transport;252
15.3.2;10.3.2 Solute transport; sieving coefficient and rejection;254
15.3.3;10.3.3 Concentration polarization and gel polarization;255
15.4;10.4 Mass transfer in reverse osmosis;258
15.4.1;10.4.1 Basic concepts;258
15.4.2;10.4.2 Solvent transport in reverse osmosis;259
15.5;10.5 Membrane systems;262
15.5.1;10.5.1 Membrane materials;262
15.5.2;10.5.2 Membrane configurations;264
15.6;10.6 Membrane processes in the food industry;266
15.6.1;10.6.1 Microfiltration;266
15.6.2;10.6.2 Ultrafiltration;266
15.6.3;10.6.3 Nanofiltration and reverse osmosis;268
15.7;10.7 Electrodialysis;270
16;Chapter 11 Extraction;276
16.1;11.1 Introduction;276
16.2;11.2 Solid–liquid extraction (leaching);278
16.2.1;11.2.1 Definitions;278
16.2.2;11.2.2 Material balance;279
16.2.3;11.2.3 Equilibrium;279
16.2.4;11.2.4 Multistage extraction;279
16.2.5;11.2.5 Stage efficiency;283
16.2.6;11.2.6 Solid–liquid extraction systems;285
16.3;11.3 Supercritical fluid extraction;288
16.3.1;11.3.1 Basic principles;288
16.3.2;11.3.2 Supercritical fluids as solvents;289
16.3.3;11.3.3 Supercritical extraction systems;290
16.3.4;11.3.4 Applications;292
16.4;11.4 Liquid–liquid extraction;293
16.4.1;11.4.1 Principles;293
16.4.2;11.4.2 Applications;293
17;Chapter 12 Adsorption and ion exchange;296
17.1;12.1 Introduction;296
17.2;12.2 Equilibrium conditions;297
17.3;12.3 Batch adsorption;299
17.4;12.4 Adsorption in columns;304
17.5;12.5 Ion exchange;305
17.5.1;12.5.1 Basic principles;305
17.5.2;12.5.2 Properties of ion exchangers;306
17.5.3;12.5.3 Application: Water softening using ion exchange;309
17.5.4;12.5.4 Application: Reduction of acidity in fruit juices;310
18;Chapter 13 Distillation;312
18.1;13.1 Introduction;312
18.2;13.2 Vapor–liquid equilibrium (VLE);312
18.3;13.3 Continuous flash distillation;315
18.4;13.4 Batch (differential) distillation;318
18.5;13.5 Fractional distillation;321
18.5.1;13.5.1 Basic concepts;321
18.5.2;13.5.2 Analysis and design of the column;322
18.5.3;13.5.3 Effect of the reflux ratio;327
18.5.4;13.5.4 Tray configuration;327
18.5.5;13.5.5 Column configuration;328
18.5.6;13.5.6 Heating with live steam;328
18.5.7;13.5.7 Energy considerations;329
18.6;13.6 Steam distillation;330
18.7;13.7 Distillation of wines and spirits;331
19;Chapter 14 Crystallization and dissolution;334
19.1;14.1 Introduction;334
19.2;14.2 Crystallization kinetics;335
19.2.1;14.2.1 Nucleation;335
19.2.2;14.2.2 Crystal growth;337
19.3;14.3 Crystallization in the food industry;340
19.3.1;14.3.1 Equipment;340
19.3.2;14.3.2 Processes;342
19.4;14.4 Dissolution;345
19.4.1;14.4.1 Introduction;345
19.4.2;14.4.2 Mechanism and kinetics;345
20;Chapter 15 Extrusion;350
20.1;15.1 Introduction;350
20.2;15.2 The single-screw extruder;351
20.2.1;15.2.1 Structure;351
20.2.2;15.2.2 Operation;352
20.2.3;15.2.3 Flow models, extruder throughput;354
20.2.4;15.2.4 Residence time distribution;357
20.3;15.3 Twin-screw extruders;357
20.3.1;15.3.1 Structure;357
20.3.2;15.3.2 Operation;359
20.3.3;15.3.3 Advantages and shortcomings;360
20.4;15.4 Effect on foods;360
20.4.1;15.4.1 Physical effects;360
20.4.2;15.4.2 Chemical effect;361
20.5;15.5 Food applications of extrusion;362
20.5.1;15.5.1 Forming extrusion of pasta;362
20.5.2;15.5.2 Expanded snacks;362
20.5.3;15.5.3 Ready-to-eat cereals;363
20.5.4;15.5.4 Pellets;364
20.5.5;15.5.5 Other extruded starchy and cereal products;364
20.5.6;15.5.6 Texturized protein products;365
20.5.7;15.5.7 Confectionery and chocolate;365
20.5.8;15.5.8 Pet foods;366
21;Chapter 16 Spoilage and preservation of foods;368
21.1;16.1 Mechanisms of food spoilage;368
21.2;16.2 Food preservation processes;368
21.3;16.3 Combined processes (the 'hurdle effect');370
21.4;16.4 Packaging;370
22;Chapter 17 Thermal processing;372
22.1;17.1 Introduction;372
22.2;17.2 The kinetics of thermal inactivation of microorganisms and enzymes;373
22.2.1;17.2.1 The concept of decimal reduction time;373
22.2.2;17.2.2 Effect of the temperature on the rate of thermal destruction/inactivation;375
22.3;17.3 Lethality of thermal processes;377
22.4;17.4 Optimization of thermal processes with respect to quality;380
22.5;17.5 Heat transfer considerations in thermal processing;381
22.5.1;17.5.1 In-package thermal processing;381
22.5.2;17.5.2 In-flow thermal processing;386
23;Chapter 18 Thermal processes, methods and equipment;392
23.1;18.1 Introduction;392
23.2;18.2 Thermal processing in hermetically closed containers;392
23.2.1;18.2.1 Filling into the cans;393
23.2.2;18.2.2 Expelling air from the head-space;395
23.2.3;18.2.3 Sealing;396
23.2.4;18.2.4 Heat processing;397
23.3;18.3 Thermal processing in bulk, before packaging;403
23.3.1;18.3.1 Bulk heating – hot filling – sealing – cooling in container;403
23.3.2;18.3.2 Bulk heating – holding – bulk cooling – cold filling – sealing;403
23.3.3;18.3.3 Aseptic processing;405
24;Chapter 19 Refrigeration, chilling and freezing;408
24.1;19.1 Introduction;408
24.2;19.2 Effect of temperature on food spoilage;409
24.2.1;19.2.1 Temperature and chemical activity;409
24.2.2;19.2.2 Effect of low temperature on enzymatic spoilage;412
24.2.3;19.2.3 Effect of low temperature on microorganisms;413
24.2.4;19.2.4 Effect of low temperature on biologically active (respiring) tissue;415
24.2.5;19.2.5 The effect of low temperature on physical properties;416
24.3;19.3 Freezing;417
24.3.1;19.3.1 Phase transition, freezing point;418
24.3.2;19.3.2 Freezing kinetics, freezing time;419
24.3.3;19.3.3 Effect of freezing and frozen storage on product quality;425
25;Chapter 20 Refrigeration, equipment and methods;430
25.1;20.1 Sources of refrigeration;430
25.1.1;20.1.1 Mechanical refrigeration;430
25.1.2;20.1.2 Refrigerants;435
25.1.3;20.1.3 Distribution and delivery of refrigeration;436
25.2;20.2 Cold storage and refrigerated transport;437
25.3;20.3 Chillers and freezers;440
25.3.1;20.3.1 Blast cooling;440
25.3.2;20.3.2 Contact freezers;442
25.3.3;20.3.3 Immersion cooling;443
25.3.4;20.3.4 Evaporative cooling;443
26;Chapter 21 Evaporation;446
26.1;21.1 Introduction;446
26.2;21.2 Material and energy balance;447
26.3;21.3 Heat transfer;449
26.3.1;21.3.1 The overall coefficient of heat transfer U;450
26.3.2;21.3.2 The temperature difference T[sub(s)] – T[sub(c)] (?T);453
26.4;21.4 Energy management;457
26.4.1;21.4.1 Multiple-effect evaporation;458
26.4.2;21.4.2 Vapor recompression;463
26.5;21.5 Condensers;464
26.6;21.6 Evaporators in the food industry;465
26.6.1;21.6.1 Open pan batch evaporator;465
26.6.2;21.6.2 Vacuum pan evaporator;466
26.6.3;21.6.3 Evaporators with tubular heat exchangers;466
26.6.4;21.6.4 Evaporators with external tubular heat exchangers;468
26.6.5;21.6.5 Boiling film evaporators;468
26.7;21.7 Effect of evaporation on food quality;471
26.7.1;21.7.1 Thermal effects;471
26.7.2;21.7.2 Loss of volatile flavor components;474
27;Chapter 22 Dehydration;476
27.1;22.1 Introduction;476
27.2;22.2 Thermodynamics of moist air (psychrometry);478
27.2.1;22.2.1 Basic principles;478
27.2.2;22.2.2 Humidity;478
27.2.3;22.2.3 Saturation, relative humidity (RH);479
27.2.4;22.2.4 Adiabatic saturation, wet-bulb temperature;479
27.2.5;22.2.5 Dew point;480
27.3;22.3 Convective drying (air drying);481
27.3.1;22.3.1 The drying curve;481
27.3.2;22.3.2 The constant rate phase;484
27.3.3;22.3.3 The falling rate phase;487
27.3.4;22.3.4 Calculation of drying time;489
27.3.5;22.3.5 Effect of external conditions on the drying rate;492
27.3.6;22.3.6 Relationship between film coefficients in convective drying;493
27.3.7;22.3.7 Effect of radiation heating;494
27.3.8;22.3.8 Characteristic drying curves;494
27.4;22.4 Drying under varying external conditions;495
27.4.1;22.4.1 Batch drying on trays;495
27.4.2;22.4.2 Through-flow batch drying in a fixed bed;497
27.4.3;22.4.3 Continuous air drying on a belt or in a tunnel;498
27.5;22.5 Conductive (boiling) drying;498
27.5.1;22.5.1 Basic principles;498
27.5.2;22.5.2 Kinetics;499
27.5.3;22.5.3 Systems and applications;500
27.6;22.6 Dryers in the food processing industry;502
27.6.1;22.6.1 Cabinet dryers;503
27.6.2;22.6.2 Tunnel dryers;504
27.6.3;22.6.3 Belt dryers;506
27.6.4;22.6.4 Belt-trough dryers;506
27.6.5;22.6.5 Rotary dryers;507
27.6.6;22.6.6 Bin dryers;507
27.6.7;22.6.7 Grain dryers;509
27.6.8;22.6.8 Spray dryers;509
27.6.9;22.6.9 Fluidized bed dryer;514
27.6.10;22.6.10 Pneumatic dryer;515
27.6.11;22.6.11 Drum dryers;516
27.6.12;22.6.12 Screw conveyor and mixer dryers;517
27.6.13;22.6.13 Sun drying, solar drying;518
27.7;22.7 Issues in food drying technology;518
27.7.1;22.7.1 Pre-drying treatments;518
27.7.2;22.7.2 Effect of drying conditions on quality;519
27.7.3;22.7.3 Post-drying treatments;520
27.7.4;22.7.4 Rehydration characteristics;520
27.7.5;22.7.5 Agglomeration;521
27.8;22.8 Energy consumption in drying;521
27.9;22.9 Osmotic dehydration;524
28;Chapter 23 Freeze drying (lyophilization) and freeze concentration;528
28.1;23.1 Introduction;528
28.2;23.2 Sublimation of water;528
28.3;23.3 Heat and mass transfer in freeze drying;529
28.4;23.4 Freeze drying, in practice;535
28.4.1;23.4.1 Freezing;535
28.4.2;23.4.2 Drying conditions;535
28.4.3;23.4.3 Freeze drying, commercial facilities;535
28.4.4;23.4.4 Freeze dryers;536
28.5;23.5 Freeze concentration;537
28.5.1;23.5.1 Basic principles;537
28.5.2;23.5.2 The process of freeze concentration;538
29;Chapter 24 Frying, baking, roasting;542
29.1;24.1 Introduction;542
29.2;24.2 Frying;542
29.2.1;24.2.1 Types of frying;542
29.2.2;24.2.2 Heat and mass transfer in frying;543
29.2.3;24.2.3 Systems and operation;544
29.2.4;24.2.4 Health aspects of fried foods;545
29.3;24.3 Baking and roasting;545
30;Chapter 25 Ionizing irradiation and other non-thermal preservation processes;550
30.1;25.1 Preservation by ionizing radiations;550
30.1.1;25.1.1 Introduction;550
30.1.2;25.1.2 Ionizing radiations;550
30.1.3;25.1.3 Radiation sources;551
30.1.4;25.1.4 Interaction with matter;552
30.1.5;25.1.5 Radiation dose;554
30.1.6;25.1.6 Chemical and biological effects of ionizing irradiation;555
30.1.7;25.1.7 Industrial applications;557
30.2;25.2 High hydrostatic pressure preservation;558
30.3;25.3 Pulsed electric fields (PEF);559
30.4;25.4 Pulsed intense light;559
31;Chapter 26 Food packaging;562
31.1;26.1 Introduction;562
31.2;26.2 Packaging materials;563
31.2.1;26.2.1 Introduction;563
31.2.2;26.2.2 Materials for packaging foods;565
31.2.3;26.2.3 Transport properties of packaging materials;568
31.2.4;26.2.4 Optical properties;570
31.2.5;26.2.5 Mechanical properties;571
31.2.6;26.2.6 Chemical reactivity;572
31.3;26.3 The atmosphere in the package;573
31.3.1;26.3.1 Vacuum packaging;573
31.3.2;26.3.2 Controlled atmosphere packaging (CAP);574
31.3.3;26.3.3 Modified atmosphere packaging (MAP);574
31.3.4;26.3.4 Active packaging;574
31.4;26.4 Environmental issues;575
32;Chapter 27 Cleaning, disinfection, sanitation;578
32.1;27.1 Introduction;578
32.2;27.2 Cleaning kinetics and mechanisms;579
32.2.1;27.2.1 Effect of the contaminant;579
32.2.2;27.2.2 Effect of the support;581
32.2.3;27.2.3 Effect of the cleaning agent;581
32.2.4;27.2.4 Effect of the temperature;583
32.2.5;27.2.5 Effect of mechanical action (shear);583
32.3;27.3 Kinetics of disinfection;584
32.4;27.4 Cleaning of raw materials;585
32.5;27.5 Cleaning of plants and equipment;587
32.5.1;27.5.1 Cleaning out of place (COP);587
32.5.2;27.5.2 Cleaning in place (CIP);587
32.6;27.6 Cleaning of packages;588
32.7;27.7 Odor abatement;588
33;Appendix;592
33.1;Table A.1 Common conversion factors;593
33.2;Table A.2 Typical composition of selected foods;594
33.3;Table A.3 Viscosity and density of gases and liquids;595
33.4;Table A.4 Thermal properties of materials;595
33.5;Table A.5 Emissivity of surfaces;596
33.6;Table A.6 US standard sieves;596
33.7;Table A.7 Properties of saturated steam – temperature table;597
33.8;Table A.8 Properties of saturated steam – pressure table;598
33.9;Table A.9 Properties of superheated steam;598
33.10;Table A.10 Vapor pressure of liquid water and ice below 0°C;599
33.11;Table A.11 Freezing point of ideal aqueous solutions;600
33.12;Table A.12 Vapor–liquid equilibrium data for ethanol–water mixtures at 1 atm;600
33.13;Table A.13 Boiling point of sucrose solutions at 1 atm;601
33.14;Table A.14 Electrical conductivity of some materials;601
33.15;Table A.15 Thermodynamic properties of saturated R-134a;601
33.16;Table A.16 Thermodynamic properties of superheated R-134a;602
33.17;Table A.17 Properties of air at atmospheric pressure;603
33.18;Figure A.1 Friction factors for flow in pipes;604
33.19;Figure A.2 Psychrometric chart;604
33.20;Figure A.3 Mixing power function, turbine impellers;605
33.21;Figure A.4 Mixing power function, propeller impellers;605
33.22;Figure A.5 Unsteady state heat transfer in a slab;606
33.23;Figure A.6 Unsteady state heat transfer in an infinite cylinder;606
33.24;Figure A.7 Unsteady state heat transfer in a sphere;607
33.25;Figure A.8 Unsteady state mass transfer, average concentration;607
33.26;Figure A.9 Error function;608
34;Index;610
34.1;A;610
34.2;B;610
34.3;C;610
34.4;D;611
34.5;E;612
34.6;F;612
34.7;G;613
34.8;H;614
34.9;I;614
34.10;J;614
34.11;K;614
34.12;L;614
34.13;M;614
34.14;N;615
34.15;O;615
34.16;P;615
34.17;R;616
34.18;S;617
34.19;T;617
34.20;U;618
34.21;V;618
34.22;W;618
34.23;Y;618
35;Series List;620