Berggren / Borwein | Pi: A Source Book | E-Book | sack.de
E-Book

E-Book, Englisch, 716 Seiten, eBook

Berggren / Borwein Pi: A Source Book


1997
ISBN: 978-1-4757-2736-4
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 716 Seiten, eBook

ISBN: 978-1-4757-2736-4
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



A complete history of pi from the dawn of mathematical time to the present. The story of pi reflects the most seminal, the most serious and sometimes the silliest aspects of mathematics. Pi is one of the few concepts in mathematics whose mention evokes a response of recognition and interest in those not concerned professionally with the subject. Yet, despite this, no source book on pi has been published until now. One of the beauties of this subject is that it allows for the inclusion of very modern, yet still accessible, mathematics.
Mathematicians and historians of mathematics will find this book indispensable, while teachers at every level from the seventh grade onward will find ample resources for anything from special topic courses to individual talks and special student projects. Following a selection of the mathematical literature over four millennia, the book covers a variety of historical writings on the cultural meaning and significance of the number, and the whole is rounded off by a number of treatments on pi that are fanciful, satirical and/or whimsical.
Berggren / Borwein Pi: A Source Book jetzt bestellen!

Zielgruppe


Professional/practitioner

Weitere Infos & Material


1. The Rhind Mathematical Papyrus-Problem 50 (~1650 B.C.).- 2. Engels. Quadrature of the Circle in Ancient Egypt (1977).- 3. Archimedes. Measurement of a Circle (~250 BC).- 4. Phillips. Archimedes the Numerical Analyst (1981).- 5. Lam and Ang. Circle Measurements in Ancient China (1986).- 6. The Bann MusA: The Measurement of Plane and Solid Figures (~850).- 7. Madhava. The Power Series for Arctan and Pi (~1400).- 8. Hope-Jones. Ludolph (or Ludolff or Lucius) van Ceulen (1938).- 9. Viète. Variorum de Rebus Mathematicis Reponsorum Liber VII (1593).- 10. Wallis. Computation of ? by Successive Interpolations (1655).- 11. Wallis. Arithmetica Infinitorum (1655).- 12. Huygens. De Circuli Magnitudine Inventa (1724).- 13. Gregory. Correspondence with John Collins (1671).- 14. Roy. The Discovery of the Series Formula for ? by Leibniz, Gregory, and Nilakantha (1990).- 15. Jones. The First Use of ? for the Circle Ratio (1706).- 16. Newton. Of the Method of Fluxions and Infinite Series (1737).- 17. Euler. Chapter 10 of Introduction to Analysis of the Infinite (On the Use of the Discovered Fractions to Sum Infinite Series) (1748).- 18. Lambert. Mémoire Sur Quelques Propriétés Remarquables Des Quantités Transcendentes Circulaires et Logarithmiques (1761).- 19. Lambert. Irrationality of ? (1969).- 20. Shanks. Contributions to Mathematics Comprising Chiefly of the Rectification of the Circle to 607 Places of Decimals (1853).- 21. Hermite. Sur La Fonction Exponentielle (1873).- 22. Lindemann. Ueber die Zahl ? (1882).- 23. Weierstrass. Zu Lindemann’s Abhandlung „Über die Ludolphsche Zahl“ (1885).- 24. Hilbert. Ueber die Trancendenz der Zahlen e und ? (1893).- 25. Goodwin. Quadrature of the Circle (1894).- 26. Edington. House Bill No. 246, Indiana State Legislature, 1897 (1935).- 27. Singmaster. The Legal Values of Pi (1985).- 28. Ramanujan. Squaring the Circle (1913).- 29. Ramanujan. Modular Equations and Approximations to ? (1914).- 30. Watson. The Marquis and the Land Agent: A Tale of the Eighteenth Century (1933).- 31. Ballantine. The Best (?) Formula for Computing 7 to a Thousand Places (1939).- 32. Birch. An Algorithm for Construction of Arctangent Relations (1946).- 33. Niven. A Simple Proof that ? Is Irrational (1947).- 34. Reitwiesner. An ENIAC Determination of ? and e to 2000 Decimal Places (1950).- 35. Schepler. The Chronology of Pi (1950).- 36. Mahler. On the Approximation of ? (1953).- 37. Wrench, Jr. The Evolution of Extended Decimal Approximations to ? (1960).- 38. Shanks and Wrench, Jr. Calculation of ? to 100,000 Decimals (1962).- 39. Sweeny. On the Computation of Euler’s Constant (1963).- 40. Baker. Approximations to the Logarithms of Certain Rational Numbers (1964).- 41. Adams. Asymptotic Diophantine Approximations to E (1966).- 42. Mahler. Applications of Some Formulae by Hermite to the Approximations of Exponentials of Logarithms (1967).- 43. Eves. In Mathematical Circles; A Selection of Mathematical Stories and Anecdotes (excerpt) (1969).- 44. Eves. Mathematical Circles Revisited; A Second Collection of Mathematical Stories and Anecdotes (excerpt) (1971).- 45. Todd. The Lemniscate Constants (1975).- 46. Salamin. Computation of ? Using Arithmetic-Geometric Mean (1976).- 47. Brent. Fast Multiple-Precision Evaluation of Elementary Functions (1976).- 48. Beukers. A Note on the Irrationality of ?(2) and ?(3) (1979).- 49. van der Poorten. A Proof that Euler Missed… Apéry’s Proof of the Irrationality of ?(3) (1979).- 50. Brent and McMillan. Some New Algorithms for High-Precision Computation of Euler’s Constant (1980).- 51. Apostol. A Proof that Euler Missed: Evaluating ?(2) the Easy Way (1983).- 52. O’Shaughnessy. Putting God Back in Math (1983).- 53. Stern. A Remarkable Approximation to ? (1985).- 54. Newman and Shanks. On a Sequence Arising in Series for ? (1984).- 55. Cox. The Arithmetic-Geometric Mean of Gauss (1984).- 56. Borwein and Borwein. The Arithmetic-Geometric Mean and Fast Computation of Elementary Functions (1984).- 57. Newman. A Simplified Version of the Fast Algorithms of Brent and Salamin (1984).- 58. Wagon. Is Pi Normal? (1985).- 59. Keith. Circle Digits: A Self-Referential Story (1986).- 60. Bailey. The Computation of ? to 29,360,000 Decimal Digits Using Borweins’ Quartically Convergent Algorithm (1988).- 61. Kanada. Vectorization of Multiple-Precision Arithmetic Program and 201,326,000 Decimal Digits of ? Calculation (1988).- 62. Borwein and Borwein. Ramanujan and Pi (1988).- 63. Chudnovsky and Chudnovsky. Approximations and Complex Multiplication According to Ramanujan (1988).- 64. Borwein, Borwein and Bailey. Ramanujan, Modular Equations, and Approximations to Pi or How to Compute One Billion Digits of Pi (1989).- 65. Borwein, Borwein and Dilcher. Pi, Euler Numbers, and Asymptotic Expansions (1989).- 66. Beukers, Bézivin, and Robba. An Alternative Proof of the Lindemann-Weierstrass Theorem (1990).- 67. Webster. The Tail of Pi (1991).- 68. Eco. An excerpt from Foucault’s Pendulum (1993).- 69. Keith. Pi Mnemonics and the Art of Constrained Writing (1996).- 70. Bailey, Borwein, and Plouffe. On the Rapid Computation of Various Polylogarithmic Constants (1996).- Appendix I — On the Early History of Pi.- Appendix II—A Computational Chronology of Pi.- Appendix III—Selected Formulae for Pi.- Credits.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.